Introduction to (some aspects of) linear dynamics

ERNST Romuald

Université Blaise-Pascal de Clermont-Ferrand Workshop, University of Málaga

12th March, 2013

Contents

- 1 Well-known properties
- 2 New classes of operators
- 3 Finite dimension
- 4 Examples
- 5 Spectral properties

Definition

A linear operator T is said to be hypercyclic if there exists a vector $x \in X$ such that its orbit by T is dense in X.

Definition

A linear operator \underline{T} is said to be supercyclic if there exists a vector $x \in X$ such that $\overline{\{T^n(\mathbb{K}.x), n \in \mathbb{N}\}} = X$.

hypercyclicity

supercyclicity

A supercyclic rotation in \mathbb{R}^2 :

A supercyclic rotation in \mathbb{R}^2 :

A supercyclic rotation in \mathbb{R}^2 :

A supercyclic rotation in \mathbb{R}^2 :

A supercyclic rotation in \mathbb{R}^2 :

A supercyclic rotation in \mathbb{R}^2 :

A supercyclic rotation in \mathbb{R}^2 :

A supercyclic rotation in \mathbb{R}^2 :

A supercyclic rotation in \mathbb{R}^2 :

Proposition

Let X be a separable Banach space and T a hypercyclic operator on X. Let $(U_i)_{i\in\mathbb{N}}$ be a countable basis of open sets. Then the set of hypercyclic vectors for T can be described as follows :

$$HC(T) = \bigcap_{i \in \mathbb{N}} \bigcup_{n \in \mathbb{N}} T^{-n}(U_i).$$

In particular, HC(T) is a dense G_{δ} -set of X.

Proposition

Let X be a separable Banach space and T a supercyclic operator on X. Let $(U_i)_{i\in\mathbb{N}}$ be a countable basis of open sets. Then the set of supercyclic vectors for T can be described as follows :

$$SC(T) = \bigcap_{i \in \mathbb{N}} \bigcup_{\substack{n \in \mathbb{N} \\ \lambda \in \mathbb{K}}} (\lambda T^n)^{-1} (U_i).$$

In particular, SC(T) is a dense G_{δ} -set of X.

Moreover, Ansari proved the following result :

Proposition

Let k be a positive integer. Then T is hypercyclic if and only if T^k is hypercyclic.

Moreover, Ansari proved the following result :

Proposition

Let k be a positive integer. Then T is supercyclic if and only if T^k is supercyclic.

Contents

- 1 Well-known properties
- 2 New classes of operators
- 3 Finite dimension
- 4 Examples
- Spectral properties

Definition (Feldman, 2002)

A linear operator T is said to be n-supercyclic, $n \ge 1$, if there exists a linear subspace of X with dimension n such that its orbit by T is dense in X.

hypercyclicity

supercyclicity

A 2-supercyclic rotation in \mathbb{R}^3 :

Question

Is the set of *n*-supercyclic subspaces a dense G_{δ} -set???

Question

Is the set of *n*-supercyclic subspaces a dense G_{δ} -set ???

• In which space?

Open Question

Let k be a non-negative integer. Is that true that T is n-supercyclic if and only if T^k is n-supercyclic???

Definition (Feldman, 2002)

A linear operator T is said to be n-supercyclic, $n \ge 1$, if there exists a linear subspace of X with dimension n such that its orbit by T is dense in X.

Definition (Shkarin, 2008)

A linear operator T is said to be strongly n-supercyclic, $n \ge 1$, if there exists a linear subspace L of X with dimension n such that for every $k \in \mathbb{N}$, the subspace $T^k(L)$ has dimension n and the set $\{T^k(L)\}_{k \in \mathbb{N}}$ is a dense subset of $\mathbb{P}_n(X)$.

Proposition

The following assertions are equivalent :

- (i) T is strongly n-supercyclic;
- (ii) There exists a subspace L with dimension n such that $(T^k(L))$ has dimension n for all k:

$$\bigcup_{i=1}^{\infty} T^i(L) \times \cdots \times T^i(L)$$
 is dense in X^n .

Proposition

The following assertions are equivalent:

- (i) T is strongly n-supercyclic;
- (ii) There exists a subspace L with dimension n such that $(T^k(L))$ has dimension n for all k: $\bigcup_{i=1}^{\infty} T^i(L) \times \cdots \times T^i(L)$ is dense in X^n .
- (iii) $\forall U \subset \mathbb{P}_n(X), \forall V \subset X^n \text{ non-empty open sets,}$ $\exists i \in \mathbb{N} : (\bigoplus_{k=1}^n T)^i(\pi_n^{-1}(U)) \cap V \neq \emptyset.$

Moreover, $\mathcal{E}S_n(T)$ is a dense G_δ set of $\mathbb{P}_n(X)$.

Theorem (Shkarin, 2008)

Let $k, n \in \mathbb{N}^*$. Then T is strongly n-supercyclic if and only if T^k is strongly n-supercyclic.

Contents

- 1 Well-known properties
- 2 New classes of operators
- 3 Finite dimension
- 4 Examples
- Spectral properties

Theorem (Bourdon, Feldman, Shapiro, 2004)

Let $n \geq 2$. There is no k-supercyclic operator on \mathbb{C}^n with $1 \leq k < n$.

Theorem (Bourdon, Feldman, Shapiro, 2004)

Let $n \geq 2$. There is no k-supercyclic operator on \mathbb{C}^n with $1 \leq k < n$.

Theorem

Let $n \ge 3$. There is no strongly k-supercyclic operator on \mathbb{R}^n with $1 \le k < n$.

Contents

- 1 Well-known properties
- 2 New classes of operators
- 3 Finite dimension
- 4 Examples
- Spectral properties

Corollary

Let S be an operator satisfying the Hypercyclicity Criterion on a Banach space Y. Then, $T = Id \oplus S$ is a strongly k-supercyclic operator on $X = \mathbb{K}^n \oplus Y$ if and only if $k \ge n$.

Theorem 1

Let X be a Banach space which admits a normalized unconditional basis $(e_i)_{i\in\mathbb{N}}$ for which the forward shift operator is continuous. Then, there exists a supercyclic operator which is not strongly p-supercyclic for any $p \geq 2$.

Contents

- Well-known properties
- 2 New classes of operators
- 3 Finite dimension
- 4 Examples
- Spectral properties

Theorem (Feldman, 2002, The Circle Theorem)

If T is a n-supercyclic operator, then there exists n circles $\Gamma_i = \{z : |z| = r_i\}, r_i \geq 0, i = 1, \ldots, n, \text{ such that every connected component of the spectrum of } T \text{ intersects } \cup_{i=1}^n \Gamma_i.$

Theorem (Feldman, 2002, The Circle Theorem)

If T is a n-supercyclic operator, then there exists n circles $\Gamma_i = \{z : |z| = r_i\}, r_i \geq 0, i = 1, \ldots, n, \text{ such that every connected component of the spectrum of } T \text{ intersects } \cup_{i=1}^n \Gamma_i.$

Theorem.

Let T be a strongly n-supercyclic operator on a Banach space X. Then, there exists two linear subspaces, F with dimension $\leq n$ and X_0 , invariant for T such that $X = F \oplus X_0$. There exists also $R \geq 0$ such that every connected component of the spectrum of $T_0 := T_{|X_0|}$ intersects the circle $\{z \in \mathbb{C} : |z| = R\}$.

Muchas Gracias!