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Abstract. We provide with criteria for a family of sequences of operators to share a fre-
quently universal vector. These criteria are inspired by the classical Frequent Hypercyclicity
Criterion and by a recent criterion due to Grivaux, Matheron and Menet where periodic
points play the central role. As an application, we obtain for any operator T in a specific
class of operators acting on a separable Banach space, a necessary and sufficient condition on
a subset Λ of the complex plane for the family {λT : λ ∈ Λ} to have a common frequently
hypercyclic vector. In passing, this allows us to exhibit frequently hypercyclic weighted
shifts which do not possess common frequently hypercyclic vectors. We also provide with
criteria for families of the recently introduced operators of C-type to share a common fre-
quently hypercyclic vector. Further, we prove that the same problem of common α-frequent
hypercyclicity may be vacuous, where the notion of α-frequent hypercyclicity extends that
of frequent hypercyclicity replacing the natural density by more general weighted densities.
Finally, it is already known that any operator satisfying the classical Frequent Universality
Criterion is α-frequently universal for any sequence α satisfying a suitable condition. We
complement this result by showing that for any such operator, there exists a vector x which
is α-frequently universal for T , with respect to all such densities α.

1. Introduction

For two separable Fréchet spaces X and Y , let us denote by L(X, Y ) the set of all con-
tinuous operators from X to Y . If X = Y , we simply write L(X) = L(X, Y ). A sequence
T = (Tn)n∈N ⊂ L(X, Y ), where N stands for the set {0, 1, 2, . . .}, is said to be universal
provided there exists a vector x ∈ X such that for any non-empty open subset U of Y , the
return set

N(x, U, T ) := {n ∈ N : Tn(x) ∈ U}
is infinite. Such a vector x is also called universal and the set of all universal vectors for
T is denoted by U(T ). In the particular case where the universal sequence T is given by
the iterates (T n)n∈N of a single operator T ∈ L(X), the operator T is said to be hypercyclic
and we denote N(x, U, T ) by N(x, U, T ) and U(T ) by HC(T ). In 2006, Bayart and Grivaux
[4] introduced the notion of frequently hypercyclic operator which quickly became one of the
most important notion in linear dynamics. An operator T ∈ L(X) is said to be frequently
hypercyclic if there exists x ∈ X such that for any non-empty open subset U of X, the lower
density of the return set d(N(x, U, T )) is positive, where for any E ⊂ N,

d(E) := lim inf
n→∞

card([0, n] ∩ E)

n+ 1
.

Such a vector x is said to be frequently hypercyclic for T and the set of such vectors is
denoted by FHC(T ). The notion of frequent universality for a sequence T of operators
in L(X, Y ) can be similarly defined (see e.g., [10]) and we denote by FU(T ) the set of
frequently universal vectors. Such behaviors look so unusual that it might seem difficult to
come by with examples. However, as we shall see further on, there exist different ways to
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exhibit frequently hypercyclic operators, even within classical families of operators. One of
the most efficient tools to prove that an operator is frequently hypercyclic is a criterion given
by Bayart and Grivaux in 2006, which is known as the Frequent Hypercyclicity Criterion
and whose proof is constructive and based on the construction of a frequently hypercyclic
vector as an infinite series. An extension of this last criterion for frequent universality called
the Frequent Universality Criterion has been given by Bonilla and Grosse-Erdmann in 2009
[11]. For a rich source of information on these well-studied notions and more about linear
dynamics, we refer to the monographs [7, 24].

A problem which has been extensively studied during the last decades is that of common
hypercyclicity. For a given family (Tλ)λ∈Λ of hypercyclic operators in L(X), it consists in
studying whether this family shares common hypercyclic vectors or not, i.e. deciding if the
set
⋂
λ∈ΛHC(Tλ) is empty or not. Chapter 7 of [7] and Chapter 11 of [24] are entirely devoted

to this topic. On the one hand, since HC(T ) is a dense Gδ subset of X whenever it is non-
empty, the Baire Category Theorem ensures that

⋂
λ∈ΛHC(Tλ) is non-empty whenever Λ is

a countable non-empty set and each Tλ is hypercyclic. On the other hand, it is not difficult
to exhibit families of hypercyclic operators with no common hypercyclic vectors (for example
the family of all hypercyclic weighted shifts on `2(N), see [7, Example 7.1]). The first positive
important result on that topic was obtained by Abakumov and Gordon [1] who showed that
the set

⋂
λ>1HC(λB) is not empty, where B is the backward shift on `2(N) defined by

B(x0, x1, x2, . . .) = (x1, x2, x3, . . .). Later on, Costakis and Sambarino [17] provided with
the first criterion of common hypercyclicity that they applied to prove the residuality of
the set of common hypercyclic vectors for multiples of the backward shift and of differential
operators, and also for uncountable families of translation operators and of specific families of
weighted shifts. The approach used by Costakis and Sambarino, based on the Baire Category
Theorem, has been developed and modified by many authors to produce new criteria and to
find common hypercyclic vectors for other uncountable families of classical operators, such
as adjoint of multiplication operators, or composition and convolution operators (see e.g.,
[2, 5, 6, 12, 15, 22]). A second approach to the problem, relying on some group arguments,
produced some of the most striking results. Indeed, León-Müller’s Theorem which asserts
that for any T ∈ L(X) and any λ ∈ C, |λ| = 1, HC(T ) = HC(λT ) [25] can be viewed as
an extremely strong result of common hypercyclicity. Their idea, which exploits the group
structure of the torus T = {z ∈ C : |z| = 1}, was extended by several authors to families
of operators forming groups or semigroups, and then combined with the first approach to
produce some new and strong results (e.g., [3, 9, 14, 31, 33]). However, such an approach
cannot be performed without an underlying group or semigroup structure. Finally, we should
mention that the non-existence of common universal vectors has also been studied (see e.g.,
[3, 7, 18, 24]).

These kind of questions have also been considered for stronger notions. In particular,
Mestiri [27, 28] recently studied these questions for the intermediate notion of U -frequent
hypercyclicity, introduced by Shkarin in 2009 [32], which lies between hypercyclicity and
frequent hypercyclicity. The formal definition of U -frequent hypercyclicity is the same as
that of frequent hypercyclicity given above except that the lower density is replaced by the
upper density d where for any E ⊂ N,

d(E) := lim sup
n→∞

card([0, n] ∩ E)

n+ 1
.

Despite the proximity with the definition of frequent hypercyclicity, U -frequent hypercyclicity
often appears to be “closer” to hypercyclicity. An illustration of this ambivalence is shown
by the residuality of the set of all U -frequently hypercyclic vectors for T whenever it is non-
empty [8, Proposition 21], like in the hypercyclic case. We shall see later, that this is a major
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difference with frequent hypercyclicity. This allows oneself to use Baire Category arguments
while studying common U -frequent hypercyclicity. Up to now, criteria of existence and of
non-existence of such vectors have been obtained. We refer to [27, 28] and the references
therein for a complete and up-to-date overview on the subject.

In comparison, common frequent hypercyclicity for families of operators has been consid-
ered in only a very few amount of papers. A probable reason is that the Baire Category
approach, which proved to be so effective for the previous notions, drastically fails for this
one. Indeed, the set FHC(T ) has been proven to be always meager (i.e., contained in the
complement of a residual set) [8, Corollary 19] which seems to indicate that even for two
operators the existence of common frequently hypercyclic vectors is a rare phenomenon.
Yet, despite a first glimpse into this topic in the case of two multiples of the backward shift
by Bayart and Grivaux [4], to our knowledge no example of a couple of operators without
common frequently hypercyclic vectors has been exhibited yet. This leads us to asking the
following question.

Question 1.1. Is it possible to provide with an example of two operators sharing no common
frequently hypercyclic vectors?

Moreover, in contrast to the hypercyclic case, it turns out that the frequently hypercyclic
multiples λB, λ ∈ Λ ⊂ (0,+∞), of the backward shift on `2(N) have no common frequently
hypercyclic vectors as soon as Λ is uncountable [4, Theorem 4.5]. This result has a straight-
forward extension to any T ∈ L(X) instead of B [3, Proposition 6.4]. Thus the first question
that arises is the following

Question 1.2. Can one exhibit non-trivial necessary and/or sufficient conditions to common
frequent hypercyclicity for multiples of a single operator?

Anyway, let us mention that the previously mentioned group approach to common hyper-
cyclicity perfectly fits to frequent hypercyclicity. For example, Bayart and Matheron proved
that FHC(λT ) = FHC(T ) for any λ ∈ T, obtaining a frequent hypercyclicity version of
León-Müller’s result [7, Theorem 6.28]. This approach has been pursued further in [3] (see
also [14]) and led to several nice results of common frequent hypercyclicity for families of
operators forming strongly continuous groups or semigroups (like translation operators on
H(Cd) and composition operators induced by non-constant Heisenberg translations on the
Hardy space of the Siegel half-space). All in all, except when actions by strongly continuous
groups or semigroups are involved, so far no general criteria for common frequent hyper-
cyclicity are known. In particular, the Baire Category approach being ineffective, one may
wonder if a constructive approach could still lead somewhere.

Question 1.3. Can we give constructive criteria for common frequent hypercyclicity?

In this paper we aim to contribute to the study of common frequent hypercyclicity by
exploring three directions that all take their roots in the constructive Frequent Hypercyclicity
(or Universality) Criterion. Indeed, we begin by following a constructive approach to the
problem of the existence of common frequently hypercyclic vectors. Our first result is a
criterion of common frequent universality (Theorem 1.4) which is a natural strengthening of
the Frequent Universality Criterion given in [11] (and of the classical Frequent Hypercyclicity
Criterion [4]) giving an answer to Question 1.3. We state it for F -spaces, i.e., for complete
and metrizable topological vector spaces. Let us recall that by definition, a Fréchet space is
a locally convex F -space (see e.g., [29]).

Theorem 1.4. Let X be an F -space, Y a separable F -space and Ti = (Ti,n)n∈N, i ∈ N, be
countably many sequences of continuous linear operators from X to Y . We assume that there
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exist a dense subset Y0 of Y , mappings Si,n : Y0 → X, i, n ∈ N, and a real number c > 1
such that for every y ∈ Y0,

(1) the series
∑

0≤n≤m Ti,m(Si,m−n(y)) converges unconditionally, uniformly for m ∈ N
and i ∈ N;

(2) the series
∑

n≥0 Ti,m(Si,m+n(y)) converges unconditionally, uniformly for m ∈ N and
i ∈ N;

(3) the series
∑

n≥(c−1)m Ti,m(Sj,m+n(y)) converges unconditionally, uniformly for m ∈ N
and i 6= j ∈ N;

(4) the series
∑

c−1
c
m≤n≤m Ti,m(Sj,m−n(y)) converges unconditionally, uniformly for m ∈

N and i 6= j ∈ N;
(5) the series

∑
n≥0 Si,n(y) converges unconditionally, uniformly for i ∈ N;

(6) the sequence (Ti,n(Si,n(y)))n∈N converges to y, uniformly for i ∈ N.
Then there exists a vector x ∈ X which is frequently universal for every Ti, i ∈ N.

In particular, one may notice that each Ti, i ∈ N, satisfies (1), (2), (5) and (6) if and only
if it satisfies the Frequent Universality Criterion given in [11] . With the help of this new
criterion, we are then able to get necessary or sufficient conditions on a subset Λ of C for
the set

⋂
λ∈Λ FHC(λB) to be non-empty, when X is a Banach space and T ∈ L(X) giving

answers to Question 1.2. For example, we will get the following:

Theorem. Let B be the backward shift on `2(N) and let Λ ⊂ C. The set
⋂
λ∈Λ FHC(λB) is

non-empty if and only if the set {|λ| : λ ∈ Λ} is a countable relatively compact non-empty
subset of (1,+∞).

Actually, this theorem is valid for more general classes of (unilateral) weighted shifts on
`2(N), see Corollary 2.24. For any operator T ∈ L(X), sufficient or necessary conditions on
Λ are given, involving e.g., the spectral radius of T , for Λ-multiples of T to share frequent
hypercyclic vectors. In full generality, our sufficient condition coincides with the assumption
of a criterion of common hypercyclicity given by Bayart and Matheron [6, Proposition 4.2].
Our general criterion of common frequent universality is also applied to countable families
of weighted shifts, differential operators or adjoint of multiplication operators (which may
not be multiples of a single operator). In passing, we produce two frequently hypercyclic
weighted shifts without common frequently hypercyclic vectors answering Question 1.1.

Our second direction of research is motivated by the recent exhibition of a new constructive
criterion for frequent hypercyclicity, based on the periodic points of the operator, given by
Grivaux, Matheron and Menet [23]. The assumptions of this criterion turn out to be more
general than that of the classical Frequent Hypercyclicity Criterion, but much less easy to
check with usual operators. On the other hand, Menet introduced a new class of operators,
the so-called operators of C-type [26], conceived as a very rich source of counter-examples
to several difficult problems, to which their new criterion for frequent hypercyclicity is very
well adapted. This new criterion being more general, giving a criterion for common frequent
hypercyclicity also based on the periodic points appears then as a natural task to supplement
our answer to Question 1.3. Such a criterion is given by Theorem 3.1. Then, we illustrate
how it can be applied to classes of operators of C-type.

Our last direction of research is based on a recent result of Ernst and Mouze who proved
[19, 20] that any operator satisfying the usual Frequent Universality Criterion in fact enjoys
a stronger form of frequent universality related to generalized lower densities dα indexed by
sequences of non-negative real numbers α satisfying suitable conditions, and first studied
by Freedman and Sember [21]. They generalize the usual lower density in the sense that
the latter coincides with any generalized lower density associated to a constant sequence
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(a, a, a, . . .), for any a > 0. Moreover, if α . β (meaning αk/βk is eventually non-increasing),
then dβ(E) ≤ dα(E) for every E ⊂ N. The relation . thus allows oneself to define scales
of generalized lower densities. So, every admissible α gives rise to a notion of α-frequent
universality generalizing the classical frequent hypercyclicity and, roughly speaking, the
faster the sequence α grows, the stronger the associated notion of α-frequent hypercyclicity
is. On the one hand, in [19, 20] the authors proved that no operator can be α-frequently
hypercyclic for α = (ek)k≥1 or growing faster. On the other hand, one of their main results
states that any operator T ∈ L(X) which satisfies the Frequent Universality Criterion is
not only frequently hypercyclic but even α-frequently universal whenever there exists s ≥ 2
such that α . Ds, where Ds := (exp(k/(log(s)(k))))k≥k0 for some k0 ≥ 1 depending on s,
and log(s) = log ◦ log ◦ . . . ◦ log, log appearing s times. In short, this illustrates that one
can approach the limiting growth as close as desired. In view of the topic of the paper, one
may be interested in the existence of common frequent hypercyclic vectors in two different
senses: the usual one, i.e. the existence of α-frequently hypercyclic vectors that are common
to several operators; one may also think, for one given operator, of the existence of vectors
which are α-frequently hypercyclic for several sequences α. These considerations lead us to
two natural questions. For T ∈ L(X) we denote by FHCα(T ) the set of all α-frequently
hypercyclic vectors for T .

Question 1.5. Let A denote the set of sequences α for which there exists s ≥ 2 such that
α . Ds and let T ∈ L(X).

(1) Let Λ ⊂ (0,+∞) and B ⊂ A be non-trivial. Under what condition do we have⋂
(λ,β)∈Λ×B FHCβ(λT ) 6= ∅?

(2) If T satisfies the Frequent Hypercyclicity Criterion, is the set
⋂
α∈A FHCα(T ) non-

empty?

We will give a positive answer to the second question (Proposition 4.8) and show that the
first one has a strongly negative answer if Λ is any non-trivial subset of (0,+∞) and even
when B is reduced to a single generalized density which grows faster than (elog(k) log(s)(k))k≥k0

for some positive integer s (Theorem 4.2). To illustrate that the growth condition that
appears in the previous answer is somehow optimal, we should mention that FHCβ(T ) =
FHC(T ) whenever β has a growth at most polynomial (i.e., β . (kr)k≥1 for some r >
−1) [19, Lemma 2.10]. Moreover, combined with our first common frequent hypercyclicity
criterion, this also gives a positive answer to Question 1.5 (1) for some non-trivial Λ and the
set B of sequences with at most polynomial growth.

The paper is organized as follows. Section 2 is devoted to our first general criterion of
common frequent universality and to some developments in various directions. In Section
3, we focus on our second criterion for common frequent hypercyclicity involving periodic
points. Then, in Section 4, we turn to the study of common α-frequent hypercyclicity in
both senses detailed above. Finally, we conclude the paper by a brief evocation of a possible
exploration of common frequent hypercyclicity from an ergodic point of view in Section 5.

2. Common frequent universality for countable families of operators

2.1. A general criterion. The main purpose of this section is to prove Theorem 1.4 and to
derive some corollaries. Since we will be working with F -spaces in this section, the notation
‖ · ‖ will stand for any F -norm defining the topology of the F -space.

We first recall the definition of uniform unconditional convergence that is needed to fully
understand the hypotheses of Theorem 1.4.

Definition 2.1. Let Λ be a set. We say that the series
∑

n∈N xλ,n, λ ∈ Λ in X converges
unconditionally uniformly for λ ∈ Λ if, for every ε > 0, there is some N ∈ N such that for



6 S. CHARPENTIER, R. ERNST, M. MESTIRI, A. MOUZE

any finite set F ⊂ {N,N + 1, . . .}, one has∥∥∥∥∥∑
n∈F

xλ,n

∥∥∥∥∥ < ε

for every λ ∈ Λ.

For the proof of Theorem 1.4, we will make use of the following refinement of [7, Lemma
6.19] and of ideas developed in [8].

Lemma 2.2. For every K > 1 and every countable family (Np(i))p∈N, i ∈ N, of sequences
of positive integers, there exists a countable family (Ep(i))p∈N, i ∈ N, of sequences of subsets
of N with positive lower density, such that for every (p, i), (q, j) ∈ N2 and every (n,m) ∈
Ep(i)× Eq(j),

(1) if (p, i) 6= (q, j), then Ep(i) ∩ Eq(j) = ∅
(2) min(Ep(i)) ≥ Np(i);
(3) if n 6= m, then |n−m| ≥ max(Np(i), Nq(j));
(4) if (p, i) 6= (q, j) and n > m, then n ≥ Km.

Proof. Let K > 1 and for every i ∈ N, let (Np(i))p∈N be an increasing sequence of positive
integers. For every i ∈ N, let us denote by (Ap(i))p∈N a sequence of subsets of N with
bounded gaps such that for any (p, i) 6= (q, j), Ap(i) ∩ Aq(j) = ∅. We fix two real numbers
0 < ε < 1/2 and a > 1 satisfying

(2.1)
1− 2ε

1 + 2ε
a > K.

For 0 < η < 1, let us set Iηu = [(1− η)au, (1 + η)au], u ∈ N. Then, for every (p, i) ∈ N2, we
define

Ep(i) =
⋃

u∈Ap(i)

(Iεu ∩ (Np(i)N)) .

By definition, (2) clearly holds and (3) is satisfied whenever (p, i) = (q, j). To prove that (3)
also holds for any (p, i) 6= (q, j), we first remark that for every u ∈ Ap(i), the inclusion

Iεu + [−Np(i), Np(i)] ⊆ I2ε
u

is equivalent to the inequality Np(i) ≤ εau. From now on we assume, up to removing finitely
many elements from each set Ap(i), that the previous inclusion holds for any (p, i) ∈ N2 and
any u ∈ Ap(i).

Now, we observe that I2ε
u ∩ I2ε

v = ∅ for every u 6= v. Indeed, one may check that if u > v,
I2ε
u and I2ε

v are disjoint if and only if
1− 2ε

1 + 2ε
au−v > 1

which holds by (2.1). Altogether we deduce that the sets Ep(i), p, i ∈ N, are disjoint and
that (3) is satisfied.

To check that (4) also holds, observe first that (2.1) implies that K(1 + ε) < (1− ε)a. Let
(p, i), (q, j) ∈ N2, n ∈ Ep(i) and m ∈ Eq(j) such that n > m. Then, there exist u ∈ Ap(i)
and v ∈ Aq(j) with u > v so that:{

(1− ε)au ≤ n ≤ (1 + ε)au

(1− ε)av ≤ m ≤ (1 + ε)av.

Thus, we have
Km ≤ K(1 + ε)av < (1− ε)av+1 ≤ (1− ε)au ≤ n.

This proves (4).
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Finally, it remains to prove that each set Ep(i) has positive lower density. Let p, i ∈ N
and (uk)k∈N be an enumeration of the set Ap(i) and let M be the maximal size of a gap in
Ap(i). Then,

d(Ep(i)) ≥ lim inf
k→∞

card(Ep(i) ∩ [0, d(1 + ε)auke])
d(1 + ε)auk+1e

≥ lim inf
k→∞

(
2εauk

2Np(i)
− 2

)
1

auk+1 + 1

≥ lim inf
k→∞

(
εauk

Np(i)
− 2

)
1

auk+M + 1

=
ε

Np(i)aM + 1
> 0.

This ends the proof of the lemma. �

We are now ready to prove Theorem 1.4.

Proof of Theorem 1.4. Within the proof, the notation ‖·‖ will be indifferently used to denote
an F -norm defining the topologies of X or Y . Since Y is separable, we can assume that
Y0 = {y0, y1, . . .}. Let (εp)p∈N be a decreasing sequence of positive real numbers such that∑

p≥0 εp < 1 and pεp → 0 as p → ∞. We also fix an increasing sequence (Jp)p∈N such
that

∑
i≥Jp εi < εp. The assumptions of the theorem imply the existence of a sequence

(Np(i))i,p∈N, increasing with respect to p ∈ N such that for every i, p ∈ N, every finite set
F ⊂ {Np(i), Np(i)+1, . . .}, every m ∈ N, every q ∈ {0, . . . , p}, every k ∈ N, every l 6= k ∈ N,
and every N ≥ Np(i),

(i)
∥∥∑
n∈F
n<m

Tk,m(Sk,m−n(yq))
∥∥ < εp;

(ii)
∥∥∑
n∈F

Tk,m(Sk,m+n(yq))
∥∥ < εp;

(iii)
∥∥ ∑

n∈F
n≥(c−1)m

Tk,m(Sl,m+n(yq))
∥∥ < εpεi;

(iv)
∥∥ ∑

n∈F
n≥(c−1)m

Tk,m(Sl,m+n(yq))
∥∥ < εJpεp;

(v)
∥∥ ∑

n∈F
c−1
c
m≤n≤m

Tk,m(Sl,m−n(yq))
∥∥ < εpεi;

(vi)
∥∥ ∑

n∈F
c−1
c
m≤n≤m

Tk,m(Sl,m−n(yq))
∥∥ < εJpεp;

(vii)
∥∥∑
n∈F

Sk,n(yq)
∥∥ < εpεi;

(viii)
∥∥Tk,N(Sk,N(yp))− yp

∥∥ < εp.

Let (Ep(i))i,p∈N be a sequence of sets given by Lemma 2.2 applied to the sequence (Np(i))i,p∈N
and to K = c. We put

x =
∑
i∈N

∑
p∈N

∑
n∈Ep(i)

Si,n(yp).

One easily checks that x ∈ X. Indeed, since for every p, i ∈ N, min(Ep(i)) ≥ Np(i), (vii)
gives ∑

i∈N

∑
p∈N

∥∥∥∥ ∑
n∈Ep(i)

Si,n(yp)

∥∥∥∥ <∑
i∈N

∑
p∈N

εpεi <∞.

Note that x is even unconditionally convergent. Our goal is now to prove that x is a frequently
universal vector for each sequence (Ti,n)n∈N, i ∈ N. We fix j ∈ N. Let (rq)q∈N be a sequence
of positive real numbers with rq → 0 as q → ∞, to be chosen later. Since the sets Ep(i),
i, p ∈ N, have positive lower density, it is sufficient to prove that

(2.2) ‖Tj,m(x)− yq‖ < rq for every q ∈ N and every m ∈ Eq(j).
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Let us then fix q ∈ N and m ∈ Eq(j). Using that Ep(i) ∩ Eq(j) = ∅ if (i, p) 6= (j, q) and
that x is unconditionally convergent in X, we can decompose Tj,m(x) as follows:

Tj,m(x) = Tj,m(Sj,m(yq)) +

Am︷ ︸︸ ︷∑
p∈N

∑
n∈Ep(j)
n6=m

Tj,m(Sj,n(yp)) +

Bm︷ ︸︸ ︷∑
i∈N
i 6=j

∑
p∈N

∑
n∈Ep(i)
n6=m

Tj,m(Si,n(yp)) .

First, since m ≥ Nq(j), (viii) gives

(2.3) ‖Tj,m(Sj,m(yq))− yq‖ < εq.

We next estimate ‖Am‖:

‖Am‖ ≤
∑
p∈N

∥∥∥∥ ∑
n∈Ep(j)
n<m

Tj,m(Sj,m−(m−n)(yp))

∥∥∥∥+

∥∥∥∥ ∑
n∈Ep(j)
n>m

Tj,m(Sj,m+(n−m)(yp))

∥∥∥∥
 .

Given that |n−m| ≥ max(Np(j), Nq(j)) for any n ∈ Ep(j), n 6= m, (i) and (ii) yield

(2.4) ‖Am‖ < 2
∑
p<q

εq + 2
∑
p≥q

εp =: r1,q.

We now turn to estimating ‖Bm‖. Again, by unconditional convergence of the series, we
have

‖Bm‖ ≤

B1
m︷ ︸︸ ︷∑

p∈N

∑
i∈N
i 6=j

∥∥∥∥ ∑
n∈Ep(i)
n<m

Tj,m(Si,m−(m−n)(yp))

∥∥∥∥+

B2
m︷ ︸︸ ︷∑

p∈N

∑
i∈N
i 6=j

∥∥∥∥ ∑
n∈Ep(i)
n>m

Tj,m(Si,m+(n−m)(yp))

∥∥∥∥ .
We deal first with B2

m. We have

B2
m ≤

∑
p≥q

∑
i∈N
i 6=j

∥∥∥∥ ∑
n∈Ep(i)
n>m

Tj,m(Si,m+(n−m)(yp))

∥∥∥∥

+
∑
p<q

∑
i<Jq
i 6=j

∥∥∥∥ ∑
n∈Ep(i)
n>m

Tj,m(Si,m+(n−m)(yp))

∥∥∥∥+
∑
i≥Jq
i 6=j

∥∥∥∥ ∑
n∈Ep(i)
n>m

Tj,m(Si,m+(n−m)(yp))

∥∥∥∥
 .(2.5)

We recall that Lemma 2.2 was applied to K = c. So, for n ∈ Ep(i) with (i, p) 6= (j, q), we
have |n−m| ≥ max(Np(i), Nq(j)). Moreover, n > m implies n ≥ cm, hence n−m ≥ (c−1)m.
In particular, n−m ≥ max(Np(i), (c− 1)m). It follows from (iii) that

(2.6)
∑
p≥q

∑
i∈N
i 6=j

∥∥∥∥ ∑
n∈Ep(i)
n>m

Tj,m(Si,m+(n−m)(yp))

∥∥∥∥ ≤∑
p≥q

∑
i∈N

εiεp ≤
∑
p≥q

εp

and that

(2.7)
∑
p<q

∑
i≥Jq
i 6=j

∥∥∥∥ ∑
n∈Ep(i)
n>m

Tj,m(Si,m+(n−m)(yp))

∥∥∥∥ ≤∑
p<q

εp
∑
i≥Jq

εi ≤ qεq.
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In the last inequality, we use that 0 < εq < 1 and the fact that
∑

i≥Jq εi ≤ εq. Now, using
that n−m ≥ Nq(j) for any n ∈ Ep(i) with (i, p) 6= (j, q), we get from (iv) that

(2.8)
∑
p<q

∑
i<Jq
i 6=j

∥∥∥∥ ∑
n∈Ep(i)
n>m

Tj,m(Si,m+(n−m)(yp))

∥∥∥∥ ≤∑
p<q

∑
i<Jq

εJqεq ≤ qεqJqεJq .

Thus, (2.5), (2.6), (2.7) and (2.8) altogether give

(2.9) B2
m ≤

∑
p≥q

εp + qεq + qεqJqεJq =: r2,q.

To finish, we consider B1
m. We have

B1
m ≤

∑
p≥q

∑
i∈N
i 6=j

∥∥∥∥ ∑
n∈Ep(i)
n<m

Tj,m(Si,m−(m−n)(yp))

∥∥∥∥

+
∑
p<q

∑
i<Jq
i 6=j

∥∥∥∥ ∑
n∈Ep(i)
n<m

Tj,m(Si,m−(m−n)(yp))

∥∥∥∥+
∑
i≥Jq
i 6=j

∥∥∥∥ ∑
n∈Ep(i)
n<m

Tj,m(Si,m−(m−n)(yp))

∥∥∥∥
 .(2.10)

For n ∈ Ep(i) with (i, p) 6= (j, q), we have |n −m| ≥ max(Np(i), Nq(j)). Moreover, n < m
gives n ≤ m/c, hence c−1

c
m ≤ m− n ≤ m. So (v) implies

(2.11)
∑
p≥q

∑
i∈N
i 6=j

∥∥∥∥ ∑
n∈Ep(i)
n<m

Tj,m(Si,m−(m−n)(yp))

∥∥∥∥ ≤∑
p≥q

∑
i∈N

εiεp ≤
∑
p≥q

εp

and

(2.12)
∑
p<q

∑
i≥Jq
i 6=j

∥∥∥∥ ∑
n∈Ep(i)
n<m

Tj,m(Si,m−(m−n)(yp))

∥∥∥∥ ≤∑
p<q

εp
∑
i≥Jq

εi ≤ qεq.

Now, since m− n ≥ Nq(j), for n ∈ Ep(i), (p, i) ∈ N2, (vi) yields

(2.13)
∑
p<q

∑
i<Jq
i 6=j

∥∥∥∥ ∑
n∈Ep(i)
n<m

Tj,m(Si,m−(m−n)(yp))

∥∥∥∥ ≤∑
p<q

∑
i<Jq

εJqεq ≤ qεqJqεJq .

Thus, (2.10), (2.11), (2.12) and (2.13) imply B1
m ≤ r2,q (see (2.9) for the definition of r2,q).

The previous inequality, together with (2.3), (2.4) and (2.9) give (2.2), setting rq = εq +
r1,q + 2r2,q which, by assumption, tends to 0 as q → +∞. �

It will often happen that in the assumptions of Theorem 1.4, Si are self-mappings of X0

and right inverses of the operators Ti on X0. It is in particular the case if T satisfies the
so-called Frequent Hypercyclicity Criterion. Because we will refer to it several times in the
paper, we recall its statement below.

Theorem 2.3 (Frequent Hypercyclicity Criterion (see Theorem 6.18 in [7])). Let X be a
separable F -space and T a continuous linear operator on X. We assume that there exist a
dense subset X0 of X and a mapping S : X0 → X0 such that for every x ∈ X0,

(1) the series
∑

n≥0 T
n(x) and

∑
n≥0 S

n(x) converge unconditionally;
(2) the equality T (S(x)) = x holds.

Then T is frequently hypercyclic.

In this context, Theorem 1.4 reads as follows.
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Corollary 2.4. Let X be a separable F -space and let (Ti)i∈N be countably many continuous
linear operators on X. We assume that there exist a dense subset X0 of X, mappings
Si : X0 → X0, i ∈ N, and a real number c > 1 such that for every x ∈ X0,

(1) the series
∑

n≥0 T
n
i (x) and

∑
n≥0 S

n
i (x) converge unconditionally, uniformly for i ∈

N;
(2) the series

∑
n≥(c−1)m T

m
i (Sm+n

j (x)) converges unconditionally, uniformly for m ∈ N
and i 6= j ∈ N;

(3) the series
∑

c−1
c
m≤n≤m T

m
i (Sm−nj (x)) converges unconditionally, uniformly for m ∈ N

and i 6= j ∈ N;
(4) the sequence Ti(Si(x)) = x for every i ∈ N.

Then there exists a common frequently hypercyclic vector for the family (Ti)i∈N.

Note that Corollary 2.4 coincides with the Frequent Hypercyclicity Criterion when the
family (Ti)i∈N is reduced to a single operator. Moreover, observe that the second part of (1)
is a consequence of (2) by taking m = 0.

These two results apply in many situations and are sometimes sharp. This is described in
the next paragraphs.

2.2. Common frequent hypercyclicity for multiples of a single operator. Let us
first give necessary conditions for the existence of common frequently hypercyclic vectors for
multiples of a given operator.

2.2.1. Necessary conditions. In this paragraph, we assume that X is a Banach space.
We recall that if T is a bounded linear operator on X and Λ ⊂ (0,+∞), then for the
family (λT )λ∈Λ to have a common frequently hypercyclic vector, Λ has to be countable [3,
Proposition 6.4]. The following proposition shows that Λ must also satisfy two other non-
trivial conditions. We will denote by r(T ) the spectral radius of T and we recall the spectral
radius formula [29]:

r(T ) = inf
n≥1
‖T n‖1/n = lim

n→∞
‖T n‖1/n.

Proposition 2.5. Let X be a Banach space, T a bounded linear operator on X and Λ ⊂
(0,+∞) a set with at least two elements. If Λ is unbounded or 1/r(T ) ≥ inf(Λ), then⋂

λ∈Λ

FHC(λT ) = ∅.

Proof. First of all, let us observe that if r(T ) = 0 then no multiple of T is even hypercyclic
and if λ < 1/r(T ), then λT is not hypercyclic either, so we can rule these cases out. Let
us first deal with the case where 1/r(T ) = inf(Λ) and, to start with, assume that 1/r(T ) is
an accumulation point of Λ. Upon taking a subsequence, we can suppose that Λ = (λk)k∈N
is decreasing to 1/r(T ). We may and shall also assume that there exists x ∈ X which is
hypercyclic for all λkT , k ∈ N. We fix x0 ∈ X \ {0} with ‖x0‖ = 1 and denote by Nk, k ≥ 0,
the sets respectively given by

N0 :=

{
n ∈ N : ‖λn0T n(x)‖ < 1

}
and Nk :=

{
m ∈ N : ‖λmk Tm(x)− x0‖ <

1

2

}
, k ≥ 1.

By assumption, each Nk, k ≥ 0, is infinite. So there exist two increasing sequences (mk)k≥1

and (nk)k≥1 such that for every k ≥ 1, mk ∈ Nk and

nk = max{n < mk : n ∈ N0}.
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Then, from the definition of nk, k ≥ 1, we get

(2.14) d(N0) ≤ lim sup
k→∞

card(N0 ∩ {0, . . . ,mk − 1})
mk

≤ lim sup
k→∞

nk
mk

.

Now, by construction, we have for any k ≥ 1,

‖T nk(x)‖ < λ−nk0 and
λ−mkk

2
< ‖Tmk(x)‖ ≤ ‖Tmk−nk‖‖T nk(x)‖.

It follows for any k ≥ 1,
λnk0

λmkk
< 2‖Tmk−nk‖,

whence

(2.15)
(
λ0

λk

)nk
≤ 2λmk−nkk ‖Tmk−nk‖ ≤ 2(λ0‖T‖)mk−nk .

Since (λk)k∈N is decreasing and nk → +∞, we first deduce from the last inequality that
mk − nk → +∞. This gives r(T ) = limk→∞ ‖Tmk−nk‖1/(mk−nk). We also derive from (2.15)
the following: (

λ0

λk

)nk/mk
≤ 21/mkλ

1−nk/mk
k ‖Tmk−nk‖1/mk for any k ≥ 1,

which implies, using that mk → +∞ and mk − nk → +∞,

lim sup
k→∞

nk
mk

≤ 1

ln(r(T )λ0)
lim sup
k→∞

(
ln(λk‖Tmk−nk‖

1
mk−nk )

)
= 0,

since, by assumption, (λk)k∈N is decreasing to 1/r(T ). This with (2.14) shows that x is not
frequently hypercyclic for λ0T when 1/r(T ) is an accumulation point of Λ.

Let us deal with the remaining case, i.e., 1/r(T ) ∈ Λ but 1/r(T ) is not an accumulation
point of Λ. We will in fact prove the stronger fact that, if 1/r(T ) and λ are distinct and
both in Λ, then r(T )−1T and λT share no frequently hypercyclic vectors. The proof goes
along the same lines as above. Let us denote µ = 1/r(T ). Let λ ∈ Λ such that λ 6= µ. By
assumption λ/µ > 1. We may and shall assume that some x ∈ X is hypercyclic for λT and
µT and we set, for some vector x0 ∈ X with ‖x0‖ = 1,

Nλ :=

{
n ∈ N : ‖λnT n(x)‖ < 1

}
and Nµ :=

{
m ∈ N : ‖µmTm(x)− x0‖ <

1

2

}
, k ≥ 1.

As above, since these sets are infinite, one can define an increasing sequence of integers
(mk)k∈N ⊂ Nµ, tending to +∞, such that the sequence (nk)k∈N defined by

nk := max{n < mk : n ∈ Nλ}
is increasing. We have d(Nλ) ≤ lim supk→∞

nk
mk

and, proceeding exactly as in the first part
of the proof, mk − nk → +∞ and(

λ

µ

)nk
≤ 2µmk−nk‖Tmk−nk‖, k ∈ N.

Therefore

d(Nλ) ≤ lim sup
k→∞

nk
mk

≤ 1

ln(r(T )λ)
lim sup
k→∞

(
ln(µ‖Tmk−nk‖

1
mk−nk )

)
= 0,

so x is not frequently hypercyclic for λT .
We now turn to the proof for the unbounded case. We fix λ0 ∈ Λ. Upon taking a

subsequence, we can suppose that Λ = (λk)k∈N is increasing to ∞. We may and shall also
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assume that there exists x ∈ X which is hypercyclic for all λkT , k ∈ N. We fix x0 ∈ X \ {0}
with ‖x0‖ = 1 and denote by Nk, k ≥ 0, the sets respectively given by

N0 :=

{
n ∈ N : ‖λn0T n(x)− x0‖ <

1

2

}
and Nk :=

{
m ∈ N : ‖λmk Tm(x)‖ < 1

}
, k ≥ 1.

By assumption, each Nk, k ≥ 0, is infinite. So there exist two increasing sequences (mk)k≥1

and (nk)k≥1 such that for every k ≥ 1, mk ∈ Nk and

nk = min{n > mk : n ∈ N0}.

Then, from the definition of nk, k ≥ 1, we get

(2.16) d(N0) ≤ lim sup
k→∞

card(N0 ∩ {0, . . . , nk − 1})
nk

≤ lim sup
k→∞

mk

nk
.

Now, by construction, we have for any k ≥ 1,

‖Tmk(x)‖ < λ−mkk and
λ−nk0

2
< ‖T nk(x)‖ ≤ ‖T nk−mk‖‖Tmk(x)‖.

It follows for any k ≥ 1,
λmkk
λnk0

< 2‖T nk−mk‖,

whence

(2.17)
(
λk
λ0

)mk
≤ 2λnk−mk0 ‖T nk−mk‖ ≤ 2(λ0‖T‖)nk−mk .

Since (λk)k∈N is increasing and mk → +∞, we first deduce from the last inequality that
nk −mk → +∞. This gives r(T ) = limk→∞ ‖T nk−mk‖1/(nk−mk). We also derive from (2.17)
the following: (

λk
λ0

)mk/nk
≤ 21/nkλ

1−mk/nk
0 ‖T nk−mk‖1/nk for any k ≥ 1,

which implies, using that nk → +∞ and nk −mk → +∞,

lim sup
k→∞

mk

nk
≤ lim sup

k→∞

1

ln(λk/λ0)

(
ln(λ0‖T nk−mk‖

1
nk−mk )

)
= 0,

since, by assumption, (λk)k∈N is increasing to ∞. This with (2.16) shows that x is not
frequently hypercyclic for λ0T when Λ is unbounded.

�

Let us make two remarks.

Remark 2.6. The proof of the previous proposition tells us a bit more than its statement.
More precisely, we have shown that, if Λ is unbounded or if 1/r(T ) ∈ Λ, and if x ∈ X is
a common hypercyclic vector for all λT , then it is not frequently hypercyclic for any λT ,
λ 6= 1/r(T ). If, e.g., T is the backward shift B on `2(N), it is not difficult to see that the set⋂
λ>1HC(λB) is different from the set HC(µB) for any µ > 1. In fact, by the previous, we

have, for µ > 1,
FHC(µB) ⊂ HC(µB) \

⋂
λ>1

HC(λB).

Another interesting feature of Proposition 2.5 (more precisely of the second part of its
proof) is that it gives an idea of how to build two frequently hypercyclic operators having
no common frequently hypercyclic vectors. This will be detailed later, see Corollary 2.28).
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Remark 2.7. One can wonder whether non-trivial conditions for common frequent hyper-
cyclicity of families of non-zero real multiples of a single operator remain true for more
general families of operators.

Recall that Bayart proved in [3] that a family of multiples of a single operator can admit a
common frequently hypercyclic vector only if this family is countable. However, we already
know that some uncountable families of operators may have common frequently hypercyclic
vectors (e.g., translation operators or composition operators, see [3, 4]). Moreover, the
León-Müller theorem for frequent hypercyclicity ([7, Theorem 6.28]), which asserts that
FHC(λT ) = FHC(T ) for any λ ∈ C, |λ| = 1, shows that uncountable families of complex
multiples of an operator on a complex separable Banach space may have common frequently
hypercyclic vector.

Now, let us focus on the necessary conditions given by Proposition 2.5. Note that requiring
the index set to be bounded is equivalent to imposing the family of real numbers (‖λT‖)λ∈Λ

to be bounded. Besides, the second condition is equivalent to asking to the family (r(λT ))λ∈Λ

to be bounded away from 1. Therefore, our question can be rephrased as follow: for a given
family (Ti)i∈N of bounded linear operators on X to share common frequently hypercyclic
vectors, is it necessary for the families (‖Ti‖)i∈N and (r(Ti))i∈N to be respectively bounded
and bounded away from 1? The answer is no: consider the family (T p)p≥1 of the positive
iterates of a frequently hypercyclic operator T on X. By Ansari’s theorem for frequent
hypercyclicity, FHC(T ) = FHC(T p) for any p ≥ 1. However, since a hypercyclic operator
cannot be power-bounded, the family (‖T p‖)p≥1 is not bounded. Moreover, if r(T ) = 1,
then by the spectral radius formula, r(T p) = r(T )p = 1 for any p ≥ 1. Note that, if X is
complex, by León-Müller’s theorem, the multiples λT with |λ| = 1 also have spectral radii
equal to 1 and yet have common frequently hypercyclic vectors. An example of a frequently
hypercyclic operator whose spectral radius is one is given in Corollary 2.28.

Given any bounded linear operator T on X and any λ > 1/r(T ), there is no reason in
general for λT to be frequently hypercyclic and, even if λT is frequently hypercyclic, it
may not satisfy the Frequent Hypercyclicity Criterion. In the next paragraph we search
for condition on a countable set Λ ⊂ (0,+∞) for multiples λT of some operator T to have
common frequently hypercyclic vectors.

2.2.2. Sufficient conditions. Let us fix a separable Fréchet spaceX and a continuous linear
operator T on X. We introduce some quantities which will play an important role in the
sequel. Given X0 a dense subset of X and a mapping S : X0 → X0 such that T (S(x)) = x
for x ∈ X0, we denote by

aT (X0, S) = inf
{
λ > 0 :

∑
n≥0

Sn

λn
(x) converges unconditionally for all x ∈ X0

}
= inf{λ > 0 : (λ−nSn(x))n∈N is bounded for all x ∈ X0}

and

bT (X0, S) = sup
{
λ > 0 :

∑
n≥0

(λT )n(x) converges unconditionally for all x ∈ X0

}
= sup{λ > 0 : ((λT )n(x))n∈N is bounded for all x ∈ X0}.

Formally speaking, bT (X0, S) does not depend on S. Yet, since T , X0 and S are linked to each
other by the fact that S acts from X0 into itself as the right inverse of T we consider them
as a couple (X0, S), so we prefer keeping the notation bT (X0, S) (and not to use bT (X0)).
When X is a Banach space, one may check that

aT (X0, S) = sup
x∈X0

lim sup
n→∞

‖Sn(x)‖1/n and bT (X0, S) = inf
x∈X0

1

lim supn→∞ ‖T n(x)‖1/n
.
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So, by the spectral radius formula, we have
(2.18) aT (X0, S) ≥ r(T )−1 and bT (X0, S) ≥ r(T )−1.

Note that bT (X0, S) may be infinite e.g., if X0 =
⋃
n≥0 ker(T n) is dense in X. This is for

example the case if T is any weighted backward shift acting on a Fréchet space X with
an unconditional basis. More specifically, if T is the backward shift B on `2(N), then S
can be taken as the forward shift F and the first inequality in (2.18) is in fact an equality.
This yields aB(X0, F ) = 1/‖B‖ = 1 (see Paragraph 2.3 for a focus on weighted shifts) and
bB(X0, F ) = +∞. Note also that our definition does not exclude a priori that aT (X0, S) ≥
bT (X0, S). Hence in what follows, the interval (aT (X0, S), bT (X0, S)) has to be understood
as empty if aT (X0, S) > bT (X0, S).

With these notations, a criterion of common hypercyclicity, due to Bayart and Matheron,
can be rephrased as follows.

Theorem 2.8 (Proposition 4.2 in [6]). Let X be a separable Fréchet space and let T be a
continuous linear operator on X. We assume that there exist X0 ⊂

⋃
n∈N ker(T n) and a

mapping S : X0 → X0 such that X0 is dense in X and T (S(x)) = x for all x ∈ X0. Then⋂
λ>aT (X0,S) HC(λT ) is a dense Gδ subset of X.

Now let us observe that, by definition, for any aT (X0, S) < λ < bT (X0, S) the family
(λnT n)n∈N satisfies the Frequent Universality Criterion [11]. So it is natural to wonder
under which extra condition the family λT , aT (X0, S) < λ < bT (X0, S), has a common
frequently hypercyclic vector. In virtue of the necessary conditions given in Paragraph 2.2.1,
the following criterion is a quite natural extension of Bayart and Matheron’s result.

Theorem 2.9. Let X be a separable Fréchet space and T a continuous linear operator on
X. We assume that there exist a dense subset X0 of X and a mapping S : X0 → X0 such
that T (S(x)) = x for all x ∈ X0. If Λ is a countable relatively compact non-empty subset of
(aT (X0, S), bT (X0, S)), then

⋂
λ∈Λ FHC(λT ) 6= ∅.

The proof is based on the following lemma, where it is assumed that E ⊂ (a, b) with a < b
means E = ∅.

Lemma 2.10. With the assumptions of Theorem 2.9, let Λ be a relatively compact subset of
(aT (X0, S), bT (X0, S)). Then there exists c > 1 such that for any x ∈ X0,
(i) the series

∑
n≥0(λT )n(x) converges unconditionally, uniformly for λ ∈ Λ;

(ii) the series
∑

n≥0

(
S
λ

)n
(x) converges unconditionally, uniformly for λ ∈ Λ;

(iii) the series
∑

n≥(c−1)m(λ
µ
)m(S

µ
)n(x) converges unconditionally, uniformly for m ∈ N and

λ, µ ∈ Λ;
(iv) the series

∑
m≥n≥ c−1

c
m(λ

µ
)m−n(λT )n(x) converges unconditionally, uniformly for m ∈ N

and λ, µ ∈ Λ.

Proof. Let us denote by ‖ · ‖ any continuous semi-norm on X. For notational simplicity, we
shall denote a = aT (X0, S) and b = bT (X0, S). We only prove (ii) and (iii). The conditions
(i) and (iv) are respectively proved in a similar way. Let a < d < inf(Λ). To get (ii), it is
enough to write, for λ ∈ Λ and m ∈ N, (S

λ
)n(x) = ( d

λ
)n(S

d
)n(x), and use that d

λ
≤ d

inf(Λ)
< 1

and that (S
d
)n(x) is bounded for any x ∈ X0 by some constant independent of λ ∈ Λ and

n ∈ N.
To prove (iii), let us fix x ∈ X0. By assumption, the series

∑
n≥0

(
S
d

)n
(x) is unconditionally

convergent. We also let c > 1 be such that

sup(Λ)

inf(Λ)

(
d

inf(Λ)

)c−1

≤ 1,
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and we write∑
n≥(c−1)m

(
λ

µ

)m(
S

µ

)n
(x) =

∑
n≥(c−1)m

(
λ

µ

(
d

µ

)c−1
)m(

d

µ

)n−(c−1)m(
S

d

)n
(x).

Since the quantity (
λ

µ

(
d

µ

)c−1
)m(

d

µ

)n−(c−1)m

is bounded by 1 uniformly for λ, µ ∈ Λ,m ∈ N and n ≥ (c−1)m, we get (iii) by unconditional
convergence of the series

∑
n≥0

(
S
d

)n
(x). �

Let us now prove Theorem 2.9.

Proof of Theorem 2.9. It is enough to check that the sequences ((λT )n)n∈N and ((S/λ)n)n∈N,
λ ∈ Λ, satisfy the assumptions (1)–(6) of Theorem 1.4. (6) is trivial, while (1), (2) and (5)
are direct consequences of (i) and (ii) of Lemma 2.10. Now, (3) and (4) follow from (iii) and
(iv) of Lemma 2.10, after observing that for any λ 6= µ ∈ Λ, x ∈ X0,∑

n≥(c−1)m

(λT )m
(
S

µ

)m+n

(x) =
∑

n≥(c−1)m

(
λ

µ

)m(
S

µ

)n
(x)

and ∑
c−1
c
m≤n≤m

(λT )m
(
S

µ

)m−n
(x) =

∑
c−1
c
m≤n≤m

(
λ

µ

)m−n
(λT )n(x).

�

A slight modification of the proof of Theorem 2.9 yields to the following universal version.

Proposition 2.11. Let X be a separable Fréchet space, T a bounded linear operator on X,
X0 a dense subset of X and a mapping S : X0 → X0 such that T (S(x)) = x for all x ∈ X0.
Let also (λi,n)n≥1, i ∈ N, be a countable family of sequences in (0,+∞). We assume that

(1) there exist c, d ∈ (aT (X0, S), bT (X0, S)) such that λi,n ∈ (cn, dn) for any i ∈ N, n ≥ 1;
(2) there exists C > 0 such that C−1λi,n+m ≤ λi,nλi,m ≤ Cλi,n+m for any n,m, i ∈ N.

Then ⋂
i∈N

FU((λi,nT
n)n) 6= ∅.

Together with the result of Paragraph 2.2.1, Theorem 2.9 gives a necessary and sufficient
condition on a set Λ ⊂ (0,+∞) for common frequent hypercyclicity of the family λT ,
λ ∈ Λ, for any T in a certain subclass of operator acting on a Banach space. Recall that if
λ < 1/r(T ), then λT is not hypercyclic.

Corollary 2.12. Let X be a separable Banach space, T be a bounded linear operator on X
and Λ ⊂ (0,+∞) with at least two elements. We assume that there exist a dense subset X0

of X and a mapping S : X0 → X0 such that T (S(x)) = x for all x ∈ X0. We also suppose
that aT (S,X0) = 1/r(T ) and bT (S,X0) = +∞. Then,⋂

λ∈Λ

FHC(λT ) 6= ∅

if and only if Λ is countable and relatively compact in (1/r(T ),+∞).

The following question arises. It will be investigated later for the class of weighted shifts,
see Paragraph 2.3.2.
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Question 2.13. For those operators T such that aT (S,X0) > 1/r(T ) for some S and X0

as in Corollary 2.12, can one improve the necessary condition on Λ ⊂ (0,+∞), given in
Proposition 2.5, so that the multiples λT share common frequently hypercyclic vectors?

To conclude the paragraph, let us combine the previous results with León-Müller’s theorem
and Ansari’s theorem for frequent hypercyclicity, see respectively [7, Theorem 6.28] and [4,
Theorem 4.7]. We recall that they tell us that FHC(λT ) = FHC(T ) = FHC(T p) for any
λ ∈ C, |λ| = 1, and any positive integer p. These with Theorem 2.9 thus imply:

Corollary 2.14. Let X be a separable complex Fréchet space, T a bounded linear operator
on X and Λ a non-empty subset of C. We assume that there exist a dense subset X0 of X
and a mapping S : X0 → X0 such that T (S(x)) = x for all x ∈ X0. If the set {|λ| : λ ∈ Λ}
is a countable relatively compact subset of (aT (X0, S), bT (X0, S)), then⋂

λ∈Λ

FHC(λT ) 6= ∅.

Moreover, if the set {|λ|1/p : p ∈ N∗, λ ∈ Λ} is a countable relatively compact subset of
(aT (X0, S), bT (X0, S)), then ⋂

λ∈Λ, p∈N∗
FHC(λT p) 6= ∅.

Note that the second condition is a consequence of the first one if aT (X0, S) < 1 and
bT (X0, S) = +∞ (e.g., for a large class of weighted shifts, see the next paragraph).

Remark 2.15. WhenX is a separable Banach space, if aT (X0, S) = 1/r(T ) and bT (X0, S) =
+∞ and Λ has at least two elements, then the sufficient conditions on Λ ⊂ C given in
Corollary 2.14 are also necessary.

We shall make another remark.

Remark 2.16. It should be noticed that the definitions of aT (X0, S) and bT (X0, S) depend
a priori on X0 and S. In particular, it could happen that for some T ∈ L(X), there exist
couples (X0, S0) and (X1, S1) such that aT (X1, S1) < aT (X0, S0). Thus it is tempting to
introduce the quantities

aT := inf
(X0,S)

aT (X0, S) and bT := sup
(X0,S)

bT (X0, S),

where the infimum and the supremum are taken over all couples (X0, S) such thatX0 is dense
in X and S : X0 → X0 is such that T (S(x)) = x for every x ∈ X0. But the conclusions
of the previous results may not hold true replacing aT (X0, S) by aT and bT (X0, S) by bT .
Indeed, it might happen that for some (X0, S), aT (X0, S) is very close to aT but bT (X0, S)
is very small compared to bT .

However, if T := Bw is a frequently hypercyclic weighted shift acting on `p(N), 1 ≤ p <
+∞, it turns out that aT = aT (c00(N), Fw) and bT = bT (c00(N), Fw) = +∞, see the next
paragraph for the formal definitions of c00(N) and Fw. This is a consequence of Bayart and
Ruzsa’s theorem [8, Theorem 4].

In the next section we concentrate our attention on common frequent hypercyclicity for
the important class of weighted shifts.
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2.3. Common frequent hypercyclicity for weighted shifts. In this whole section, we
assume that X is a Fréchet space with an unconditional basis (en)n∈N. We call weight a
sequence of nonzero real numbers. Given a weight w = (wn)n∈N, the weighted shift Bw is
defined, for x =

∑
n≥0 xnen ∈ X, by

Bw(x) =
∑
n≥0

wn+1xn+1en.

The series
∑

n≥0wn+1xn+1en may not be convergent in X for all x ∈ X yet, by the Closed
Graph Theorem, Bw maps X into itself if and only if it is continuous on X. In this case, it
is equivalently defined by Bw(en) = wnen−1, n ≥ 0, with the convention e−1 = 0.

For any weight w, Bw admits a (formal) right inverse, that we denote Fw, given by

Fw(x) =
∑
n≥1

xn−1

wn
en

for x =
∑

n≥0 xnen ∈ X. The series
∑

n≥1
xn−1

wn
en may not belong to X, but Fw is well-defined

from c00(N) := span(en : n ≥ 0) into itself and Fw(en) = en+1/wn+1, n ≥ 0. Note that the
map Fw is referred to as the forward shift associated to the weight w−1 := (w−1

n )n≥0.

We recall that a continuous weighted shift Bw on X is frequently hypercyclic whenever
the series ∑

n≥1

(w1 . . . wn)−1en

is convergent in X, see [24, Corollary 9.14].

2.3.1. General criteria. We first state a criterion of common frequent hypercyclicity for
general families of weighted shifts, derived from Corollary 2.4.

Theorem 2.17. Let X be a separable Fréchet space with an unconditional basis (en)n∈N and
w(i) = (wn(i))n∈N, i ∈ N, be countably many weights for which every Bw(i), i ∈ N, is a
continuous operator on X. We assume that there exist a weight ω = (ωn)n∈N, constants
M > 1 and 0 < η < 1 and a constant C > 0, such that for any i ∈ N and any n ≥ 0, m ≥ 1,
(i) the series

∑
k≥1(ω1 . . . ωk)

−1ek is unconditionally convergent in X;
(ii) |ωn . . . ωn+m| ≤ Cηm|wn(i) . . . wn+m(i)|;
(iii) C−1M−m ≤ |wn(i) . . . wn+m(i)| ≤ CMm.
Then there exists a common frequently hypercyclic vector for the family (Bw(i))i∈N.

Proof. We consider X0 = span(ek : k ≥ 0). Since X0 is dense in X, up to taking Si := Fw(i),
i ∈ N, we need only check that the assumptions (1)–(4) of Corollary 2.4 are satified for any
x = ek, k ∈ N. Let us then fix k ∈ N. Observe that (4) is trivially satisfied. From now on,
for l < 0, we use the notations el = 0 and wl(i) = 0, i ∈ N. For any i, j, l,m ∈ N, let us write

Bm
w(i)(F

l
w(j)(ek)) =

wk+l−m+1(i) . . . wk+l(i)

wk+1(j) . . . wk+l(j)
ek+l−m.

Note that Bn
w(i)(ek) = 0 whenever n > k. This gives the first part of (1) in Corollary 2.4.

Moreover, for every i ∈ N,

(2.19)
∑
n≥0

F n
w(i)(ek) =

∑
n≥0

1

wk+1(i) . . . wk+n(i)
ek+n.

By assumption (ii), we have |wk+1(i) . . . wk+n(i)| > C−1|ωk+1 . . . ωk+n| for every n ≥ 1 and
i ∈ N. So, by condition (i) and using that (en)n∈N is an unconditional basis, we get that the
left-hand side term in (2.19) is unconditionally convergent in X, uniformly for i, hence the
second part of (1) in Corollary 2.4.
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Let us now turn to proving that (2) in Corollary 2.4 holds. We write

Bm
w(i)(F

m+n
w(j) (ek)) =

wk+n+1(i) . . . wk+n+m(i)

wk+1(j) . . . wk+n+m(j)
ek+n

=
wk+n+1(i) . . . wk+n+m(i)

wk+n+1(j) . . . wk+n+m(j)

ωk+1 . . . ωk+n

wk+1(j) . . . wk+n(j)
(ωk+1 . . . ωk+n)−1ek+n.

Let % ∈ (η, 1) and c > 1 be such that M2%c−1 ≤ 1. By the condition (i) and unconditionality
of (en)n∈N, the sequence ((ωk+1 . . . ωk+n)−1ek+n)n∈N is bounded. We denote by ‖ · ‖ any
continuous semi-norm on X. Then, for some constant K (depending only on η, C, k and
the constant of unconditionality of (en)n∈N) and thanks to the assumptions (ii) and (iii), we
have for any n, i, j ∈ N and m ≥ 1,∥∥∥Bm

w(i)(F
m+n
w(j) (ek))

∥∥∥ ≤ KM2mηn.

Let us now write

M2mηn = (M2%c−1)m%n−(c−1)m

(
η

%

)n
≤
(
η

%

)n
for any n ≥ (c − 1)m and m ≥ 1. As % ∈ (η, 1), the series

∑
n≥(c−1)mM

2mηn is absolutely
convergent, uniformly for m ≥ 0, and so the series

∑
n≥(c−1)mB

m
w(i)(F

m+n
w(j) (ek)) converges

unconditionally, uniformly for m ≥ 0 and i, j ∈ N. This implies (2) from Corollary 2.4.
One observes that (iii) implies that (3) in Corollary 2.4 holds for any c > 1 since, for k ≥ 0

given, Bm
w(i)(F

m−n
w(j) (ek)) = 0 whenever m > k c

c−1
and c−1

c
m ≤ n ≤ m. The details are left to

the reader. �

The previous theorem gives a rather transparent way for building up examples of countable
families of weighted shifts sharing frequent hypercyclic vectors. Let us give an example.

Example 2.18. For λ > 1, let Bw(λ) denote the weighted shifts acting on `p(N), 1 ≤ p <∞,
defined by (wn(λ))n≥1 =

(
2(n+1

n
)λ
)
n≥1

. Then one can check that Theorem 2.17 implies that
for any countable relatively compact subset Λ of (1,+∞),⋂

λ∈Λ

FHC(Bw(λ)) 6= ∅.

Remark 2.19. As a corollary of the proof, one may check that Theorem 2.17 remains true
if we suppose that there exist a weight ω = (ωn)n∈N, constants C > 0 and c > 1, such that
for any i, j ∈ N and any n ≥ 0, m ≥ 1,
(i) the series

∑
k≥1(ω1 . . . ωk)

−1ek is unconditionally convergent in X;
(ii) |ωn . . . ωn+m| ≤ C|wn(i) . . . wn+m(i)|;
(iii) C−1 ≤

∣∣ wn(i)...wn+m(i)
wn(j)...wn+m(j)

∣∣ ≤ C whenever n ≥ (c− 1)m.
In particular, if the family is composed of a finite (non-zero) number of frequently hypercyclic
operators, then it suffices to check (iii). Moreover, if two such operators satisfy that the
product of their weights are equivalent then they share frequent hypercyclic vectors.

This remark allows us to provide with examples of families of weighted shifts sharing
frequently hypercyclic weighted shifts for which Theorem 2.17 does not apply.

Example 2.20. Let 1 ≤ p < +∞. For λ ∈ (0,+∞), let Bw(λ) be the weighted shift on
`p(N), defined by wn(λ) = 1 + λ/n, n ≥ 1. In [17], it is proven that

⋂
λ>1HC(Bw(λ)) is

residual. Now, one may check that the series∑
n≥1

1

w1(λ) . . . wn(λ)
en
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is unconditionally convergent in `p(N) if and only if λ > 1/p (where (en)n∈N is the unit
sequence in `p(N)). We also notice that wn(λ) ≤ wn(µ) for any λ ≤ µ. Moreover, for any
λ > 0, using the classical estimate

w1(λ) . . . wn(λ) ∼ nλ

λΓ(λ)
, n→∞,

where Γ stands for the Gamma function, we obtain for any λ, µ > 0,

wn(λ) . . . wn+m(λ)

wn(µ) . . . wn+m(µ)
∼
(
1 +

m

n

)λ−µ
, n→∞.

Thus for some constant C ≥ 1 and any constant c > 1,

C−1 min

(
1,

(
c

c− 1

)λ−µ)
≤ wn(λ) . . . wn+m(λ)

wn(µ) . . . wn+m(µ)
≤ C max

(
1,

(
c

c− 1

)λ−µ)
whenever n ≥ (c− 1)m. We deduce from the above and Remark 2.19 that for any countable
relatively compact subset Λ of (1

p
,+∞), one has⋂
λ∈Λ

FHC(Bw(λ)) 6= ∅.

Observe that, by Bayart and Ruzsa’s theorem (see Remark 2.22 below), Bw(λ) is not
frequently hypercyclic on `p(N) if λ ≤ 1/p.

The main result of Paragraph 2.2 can be also applied to weighted shifts. Let X be a
separable Fréchet space with an unconditional basis (en)n∈N and set c00(N) = span(en :
n ≥ 0). With the notations of Paragraph 2.2, a slight generalization of Abakumov and
Gordon’s theorem states that the set of common hypercyclic vectors for the multiples λBw

of a continuous weighted shift Bw on X, λ > aBw(c00(N), Fw), is Gδ and dense in X see [7,
p. 178] or [6]. Note that this result can also be deduced from Theorem 2.8.

In this context, Theorem 2.9 reads as follows.

Corollary 2.21. Let X be a separable Fréchet space with an unconditional basis (en)n∈N and
let Bw be a continuous weighted shift on X. Then the set

⋂
λ∈Λ FHC(λBw) is non-empty

whenever Λ is any countable relatively compact non-empty subset of (aBw(c00(N), Fw),+∞).

Similarly, Corollary 2.12 tells us that if in Corollary 2.21 we assume in addition that
aBw(c00(N), Fw) = 1/r(Bw) and Λ has at least two elements, then the condition becomes
also necessary . Moreover Question 2.13 makes sense, and seems to be a bit more accessible
in this setting, especially when X = `p(N), 1 ≤ p < +∞. This particular case will be
investigated in the next paragraph.

To finish, we shall make a remark.

Remark 2.22. Remark that in a lot of cases, the condition Λ ⊆ (aBw(c00(N), Fw),+∞) in
Corollary 2.21 can be replaced by asking that λBw is frequently hypercyclic for every λ ∈ Λ
(which is clearly the weakest thing to ask to get common frequent hypercyclicity). Indeed
for `p(N) spaces with 1 ≤ p <∞, this follows from a result of Bayart and Ruzsa [8] in 2015
stating that weighted shifts are frequently hypercyclic if and only if they satisfy the Frequent
Hypercyclicity Criterion. This result was then extended to more general classes of spaces in
[13], including for example the space H(D).
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2.3.2. Common frequent hypercyclicity for multiples of weighted shifts on `p(N).
In this paragraph we specify the study led in Section 2.2 and in the previous paragraph to
multiples of a single weighted shift acting on `p(N), 1 ≤ p < +∞.

Let us fix 1 ≤ p < +∞. We recall that `p(N) stands for the space of all sequences
x = (xn)n∈N of scalars for which ‖x‖ := (

∑
n∈N |xn|p)1/p < +∞. Endowed with the norm

‖ · ‖, it is a Banach space. The unit sequence (en)n∈N is a boundedly complete unconditional
basis of `p(N) and the subspace X0 := c00(N) = span(en : n ≥ 0) is dense in `p(N).
A weighted shift Bw is bounded on `p(N) if and only if the sequence w is bounded, i.e.
supn≥1 |wn| < +∞, in which case ‖Bw‖ = supn≥1 |wn|.

Most of the important quantities introduced in Section 2.2 can be explicitly computed
when working with weighted shifts on `p(N). We keep the notations of Paragraph 2.2.2
except for the spectral radius r(Bw) of a weighted shift Bw that we will simply denote by
rw. We also set

rp,w := sup{|λ| : λ ∈ σp(Bw)},
where σp(Bw) denotes the point spectrum of Bw (i.e., the eigenvalues of Bw). Then some
calculations give:

• X0 = ∪n≥1 ker(Bn
w), hence bBw(X0, Fw) = +∞;

• aBw(X0, Fw) = r−1
p,w = lim supn→∞ |w1 . . . wn|−1/n, see e.g., [30, Theorem 8, p. 70];

• rw = limn→∞
(
supk≥1 |wk . . . wk+n|

)1/n.
Let us also introduce the quantity:

• λw := lim supn→∞ |w1 . . . wn|1/n.
We thus have

‖Bw‖−1 ≤ r−1
w ≤ λ−1

w ≤ r−1
p,w.

On the one hand, if w is a monotonic sequence (hence a convergent sequence to some real
number w∞), then rw = λw = rp,w = w∞. Note that if w is increasing, then these quantities
are also equal to ‖Bw‖. On the other hand, as shown by the next example, it is not difficult
to provide with weights w which allow to distinguish all or some of the quantities ‖Bw‖−1,
r−1
w , λ−1

w and r−1
p,w.

Example 2.23. Let a ≤ b ≤ c ≤ d be four positive real numbers, and let us define, for any
n ≥ 1,

wn :=


a if n ∈ {1, . . . , 4} ∪ {k2(k−1)2

+ 1, . . . , 2k
2 − 1}

d if n = 2k
2

c if n ∈ {2k2
+ 1, . . . , 2k

2
+ k + 1}

b if n ∈ {2k2
+ k + 2, . . . , (k + 1)2k

2}

, k ≥ 2.

Then, one may check that

‖Bw‖−1 = 1/d ≤ r−1
w = 1/c ≤ λ−1

w = 1/b ≤ r−1
p,w = 1/a.

We recall that by Bayart and Ruzsa’s theorem [8], a weighted shift is frequently hypercyclic
on `p(N), 1 ≤ p < +∞, if and only if it satisfies the Frequent Hypercyclicity Criterion. Then,
for any 0 ≤ λ < r−1

p,w, λBw is not frequently hypercyclic. Together with Proposition 2.5 and
Corollary 2.12, we thus have the following so far:

Corollary 2.24. Let Bw be a bounded weighted shift on `p(N), 1 ≤ p < +∞, and let
Λ ⊂ (0,+∞) be a non-empty set. Then

(1) the set
⋂
λ∈Λ FHC(λBw) is non-empty whenever Λ is a countable relatively compact

subset of (r−1
p,w,+∞);
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(2) the set
⋂
λ∈Λ FHC(λBw) is empty whenever Λ is unbounded, or Λ has at least two

elements and r−1
w ≥ inf(Λ).

In particular, if rp,w = rw and Λ has at least two elements, then the sufficient condition in
(1) is also necessary.

The next proposition is a slight improvement of (2) in the previous corollary, and a partial
answer to Question 2.13 in the present context.

Proposition 2.25. Let Bw be a weighted shift acting on `p(N) and Λ a subset of (0,+∞)
with at least two elements. If λ−1

w ≥ inf(Λ), then⋂
λ∈Λ

FHC(λBw) = ∅.

Proof. It is very similar to that of Proposition 2.5, so we only give the outline in the case
where Λ is a sequence (λk)k∈N decreasing to some λ∞ ≤ λ−1

w , and where there exists x =
(xn)n∈N ∈ `p(N) which is a hypercyclic vector for each λkBw, k ∈ N. As in the proof of
Proposition 2.5, we introduce the sets

N0 :=

{
n ∈ N : ‖λn0Bn

w(x)‖ < 1

}
and Nk :=

{
m ∈ N : ‖λmk Bm

w (x)− e0‖ <
1

2

}
, k ≥ 1.

Then we similarly define increasing sequences (nk)k≥1 ⊂ N0 and (mk)k≥1, with mk ∈ Nk for
k ≥ 1, and such that d(N0) ≤ lim supk→∞ nk/mk. Thus for any k ≥ 1,

λnk0 |wmk−nk+1 . . . wmk ||xmk | < 1 and λmkk |w1 . . . wmk ||xmk | >
1

2
.

It follows, for any k ≥ 1,
λnk0

λmkk
< 2|w1 . . . wmk−nk |.

In particular mk − nk → +∞ and for any k ≥ 1,

(λ0/λk)
nk/mk < 21/mkλ

1−nk/mk
k |w1 . . . wmk−nk |1/mk ,

whence
d(N0) ≤ lim sup

k→∞

nk
mk

≤ C(lim sup
k→∞

ln(λk)− ln(λ−1
w )) ≤ 0,

for some constant C ≥ 0. Thus x is not frequently hypercyclic for λ0Bw. �

We then deduce the following.

Corollary 2.26. Let Bw be a weighted shift on `p(N) and let Λ be a subset of (0,+∞) with
at least two elements. We assume that λw = rp,w. Then⋂

λ∈Λ

FHC(λBw) 6= ∅

if and only if Λ is relatively compact in (r−1
p,w,+∞).

The question whether the last corollary holds true for any weighted shift remains open.
More precisely,

Question 2.27. Does the conclusion of Proposition 2.25 hold true if λ−1
w is replaced by r−1

p,w?

We conclude by applying the results of this paragraph in order to exhibit explicit frequently
hypercyclic weighted shifts which share no frequently hypercyclic vector.

Corollary 2.28. There exist two frequently hypercyclic weighted shifts on `p(N), 1 ≤ p <
+∞, with no common frequently hypercyclic vector.
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Proof. Let (wn)n≥1 =
(
(n+1

n
)2
)
n≥1

. Since (wn)n≥1 is decreasing to 1, one has r−1
w = r−1

p,w =

λ−1
w = 1. Moreover, Bw is frequently hypercyclic, since

∑
n≥1(w1 . . . wn)−p < ∞. Thus,

applying Proposition 2.25 with Λ = {1, λ}, λ > 1, we get FHC(Bw) ∩ FHC(λBw) = ∅. �

Remark 2.29. The proof of Corollary 2.28 shows a bit more striking fact: for any monotonic
weight w converging to w∞ > 0, w−1

∞ Bw shares a common frequently hypercyclic vector with
none of its multiple (different from itself).

2.4. Other examples. In this paragraph, we apply our general common frequent hyper-
cyclicity criterion (Theorem 1.4) to classical frequently universal sequences of operators which
are not weighted shifts.

Since almost all the classical examples of frequently hypercyclic operators satisfy the
Frequent Hypercyclicity Criterion, the range of applications of Theorem 2.9 is quite large.

Example 2.30 (Differential operators on H(C)). Let D be the differentiation operator on
H(C), D(f) = f ′. Costakis and Mavroudis showed [16] that for any non-constant polynomial
P , P (D) satisfies Bayart and Matheron’s criterion (Theorem 2.8) with aP (D)(X0, S) = 0 and
bP (D)(X0, S) = +∞ for some dense subset X0 of H(C) and some right inverse S of P (D) on
X0. Thus, with the frequently hypercyclic version of the León-Müller Theorem and Theorem
2.9, we can deduce that ⋂

λ∈Λ

FHC(λP (D)) 6= ∅,

for any countable relatively compact non-empty subset Λ of C∗.

Example 2.31 (Adjoint of a multiplication operator on the Hardy space). We denote by
D := {z ∈ C : |z| < 1} the unit disc, T := {z ∈ C : |z| = 1} the unit circle, by L∞ the space
of (essentially) bounded measurable functions on T, by H∞ the space of bounded analytic
functions in D, and by H2 the classical Hardy space,

H2 :=

{
f(z) =

∑
k≥0

akz
k ∈ H(D) : ‖f‖2 :=

(∑
k≥0

|ak|2
)1/2

<∞

}
.

We recall that L∞, H∞ and H2 are Banach spaces, endowed respectively with the essential
supremum norm ‖ · ‖L∞ on T, the sup-norm ‖ · ‖∞ on D and ‖ · ‖2. Let Φ ∈ H∞ be such that
Φ is not outer and 1/Φ ∈ L∞. We denote by MΦ : H2 → H2 the multiplication operator
with symbol Φ, defined by, MΦ(f) = Φf for f ∈ H2, and by M∗

Φ its adjoint. It is known [7]
that λM∗

Φ is frequently hypercyclic on H2 for any λ > ‖1/Φ‖∞ and that⋂
λ>‖1/Φ‖∞

HC(λM∗
Φ)

is a dense Gδ-subset of H2 [22].
Now, let us write the inner-outer decomposition Φ = uθ, with u outer and θ the non-

constant inner part of Φ. Let us define X0 := ∪n≥1Kn with Kn := H2 	 θnH2. Then X0

is the generalized kernel of M∗
Φ and is dense in H2. Moreover, if we define S := M∗

1/uMθ,
then S maps X0 to itself, M∗

ΦS = Id and ‖S‖ ≤ ‖1/Φ‖L∞ . We refer e.g., to the proof
of [22, Theorem 3.1] for the details concerning the previous claims. It is also known that
r(M∗

Φ) = ‖Φ‖∞. Thus we have

‖Φ‖−1
∞ = r(M∗

Φ)−1 ≤ aM∗Φ(X0, S) ≤ ‖S‖ ≤ ‖Φ−1‖L∞

and bM∗Φ(X0, S) = +∞. Therefore, Theorem 2.9 directly implies that⋂
λ∈Λ

FHC(λM∗
Φ) 6= ∅,
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whenever Λ is a countable relatively compact non-empty subset of (‖1/Φ‖L∞ ,+∞).

We shall now focus on applications of Theorem 1.4 to families of operators which are not
multiples of a single one. In fact, we can deduce from Corollary 2.4 the following more
general result.

Proposition 2.32. Let {Φλ : λ ∈ Λ} be a countable family of bounded analytic functions in
D with the same non-constant inner factor θ. We assume that

sup{‖1/Φλ‖L∞ : λ ∈ Λ} < 1 and sup{‖Φλ/Φµ‖∞ : λ, µ ∈ Λ} <∞.
Then ⋂

λ∈Λ

FHC(M∗
Φλ

) 6= ∅.

Proof. We aim to apply Corollary 2.4. By the comment after its statement, we need only
check items (2)–(4) and the first part of (1). Since the functions Φλ share the same
non-constant inner factor, the set X0 := ∪n≥1Kn with Kn := H2 	 θnH2 is the general-
ized kernel of each M∗

Φλ
. More precisely, for any f ∈ X0, there exists n ≥ 1 such that

(M∗
Φλ

)n(f) = 0 for any λ ∈ Λ. Let uλ denote the outer factor of Φλ, λ ∈ Λ. As recalled
above, setting Sλ := M∗

1/uλ
Mθ, we have M∗

Φλ
Sλ = Id, λ ∈ Λ. So the first part of (1)

and (4) of Corollary 2.4 are satisfied. Similarly, for any positive integers n ≤ m we have
(M∗

Φλ
)mSm−nµ = (M∗

Φλ
Sµ)m−n(M∗

Φλ
)n, λ, µ ∈ Λ, which gives (3) of Corollary 2.4.

Let us prove (2) of Corollary 2.4. We set

a := sup{‖1/Φλ‖L∞ : λ ∈ Λ} < 1 and M := sup{‖Φλ/Φµ‖∞ : λ, µ ∈ Λ} <∞.
Let λ 6= µ ∈ Λ and f ∈ X0. By assumption, there exists b ∈ (a, 1) such that for any m ∈ N
and n ≥ (c− 1)m,

‖(M∗
Φλ

)m(Sm+n
µ (f))‖2 = sup

‖g‖2=1

〈
(M∗

Φλ
)m(Sm+n

µ (f)), g
〉

= sup
‖g‖2=1

〈
f,

(
uλ
uµ

)m(
θ̄

uµ

)n
g

〉
≤ ‖f‖2

∥∥∥∥uλuµ
∥∥∥∥m
∞

∥∥∥∥ 1

uµ

∥∥∥∥n
∞

≤ ‖f‖2

(
Mb(c−1)

)m
bn−(c−1)m

(a
b

)n
.

Since b ∈ (a, 1), (2) of Corollary 2.4 then follows by taking c > 1 so that Mb(c−1) ≤ 1. �

3. Periodic points at the service of common frequent hypercyclicity

Despite its apparent unpleasant formulation, the classical Frequent Hypercyclicity Crite-
rion turns out to be very useful for checking that natural operators are frequently hypercyclic
(and chaotic). We saw in the previous section that it fits well to formulating easy-to-use suf-
ficient conditions for common frequent hypercyclicity. In [23], the authors provided a quite
appealing new criterion for frequent hypercyclicity and chaos involving the periodic points
of the operator [23, Theorem 5.31]. It is shown there that all the operators which satisfy the
Frequent Hypercyclicity Criterion do also satisfy the assumptions of this new one. However,
it quickly appears from its statement that it is not so simple to use when dealing with natural
operators (e.g., weighted shifts). In fact, it is very well adapted to certain type of operators
- the so called operators of C-type - which were introduced in [26] and extensively developed
[23, Section 6] in order to build several counter-examples.

In this section, we provide with a sufficient condition for common frequent hypercyclicity
derived from [23, Theorem 5.31]. In the whole section, X is a separable Banach space. We
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recall that a vector x ∈ X is a periodic point for T ∈ L(X) if there exists p ∈ N such
T p(x) = x. Let us denote by Per(T ) the set of all periodic points for T . For x ∈ Per(T )
we denote by pT (x) the period of x for T (i.e., the smallest positive integer p such that
T p(x) = x).

Theorem 3.1. Let X be a separable Banach space and (Ts)s≥1 a countable family of bounded
linear operators on X. We assume that there exist a dense linear subspace X0 of X with
Ts(X0) ⊂ X0 and X0 ⊂ Per(Ts) for any s ≥ 1, and a constant α ∈ (0, 1) such that the
following property holds true: for every s, q ≥ 1, every ε > 0 and every x, y ∈ X0, there exist
z ∈ X0 and integers n, d ≥ 1 such that, for every 1 ≤ t ≤ q,

(1) d is a multiple of pTt(y) and of pTt(z);
(2) ‖T kt (z)‖ < ε for every 0 ≤ k ≤ αd;
(3) ‖T n+k

s (z)− T ks (x)‖ < ε for every 0 ≤ k ≤ αd.
Then there exists a common frequently hypercyclic vector for the family (Ts)s≥1.

If the family (Ts)s≥1 is reduced to a single operator, then Theorem 3.1 is exactly [23,
Theorem 5.31]. Observe that Theorem 3.1 does not apply to families of multiples of a single
operator since Per(T ) ∩ Per(λT ) = ∅ in general.

It is natural to wonder whether two operators satisfying [23, Theorem 5.31] have a common
frequently hypercyclic vector. Corollary 2.28 tells us that this is not the case: there exists
two multiples of the same weighted shift, which satisfy the classical Frequent Hypercyclicity
Criterion, and so [23, Theorem 5.31] as well, and which do not have common frequently
hypercyclic vectors. These two operators do not have the same periodic vectors. Now we
do not know whether two operators satisfying [23, Theorem 5.31] with the same X0 and
α automatically share a frequently hypercyclic vector. Note that applying Theorem 3.1
demands more than “each Ts satisfies the assumptions of [23, Theorem 5.31] with the same
X0 and α”.

Proof of Theorem 3.1. The proof is greatly inspired by that of [23, Theorem 5.31]. Let (xl)l≥1

be a sequence of vectors in X0, dense in X, and let (Ip(s))p,s≥1 be a partition of N \{0} such
that each set Ip(s) is infinite and has bounded gaps. Let us denote by rp(s) the maximal
size of a gap for Ip(s). We set Ip(s) := {jm(p, s) : m ≥ 1}, where (jm(p, s))m≥1 is increasing.
Remark that, by definition, jm+1(p, s)−jm(p, s) ≤ rp(s) for every m ≥ 1. We also let (yj)j∈N
be given by yj = xp if j ∈ Ip(s). Now we use the assumptions of the theorem to build, by
induction on j ≥ 1, a sequence (zj)j≥1 of vectors in X0 and increasing sequences of positive
integers (dj)j≥1 and (nj)j≥1 such that the following properties hold, for any p, s ≥ 1 and
j ∈ Ip(s):
(i) dj is a multiple of pTt(

∑j−1
i=1 zi) and pTt(zj) for every t ≥ 1 so that there exists q ≥ 1

such that Iq(t) ∩ [1, j] 6= ∅;
(ii) ‖T kt (zj)‖ < 2−j for every 0 ≤ k ≤ αdj and every t ≥ 1 so that there exists q ≥ 1 such

that Iq(t) ∩ [1, j] 6= ∅;
(iii) ‖T nj+ks (zj)− T ks (yj −

∑j−1
i=1 zi)‖ < 2−j for every 0 ≤ k ≤ αdj;

(iv) nj is a multiple of pTs(
∑j−1

i=1 zi) and αdj < nj ≤ dj;
(v) αdj > 4dj−1, where d0 := 0.

Conditions (i) and (ii) are made possible by the assumptions of the theorem and the fact
that the set ⋃

q≥1

⋃
1≤i≤j

{t ≥ 1 : i ∈ Iq(t)}

is finite for any j ≥ 1. The choice of nj is possible thanks to several elementary facts which
are explained in the first lines of the proof of Theorem 5.31 in [23].
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By (ii), the sum z :=
∑

i≥1 zi defines a vector in X. Let us check that z is frequently
hypercyclic for every Ts, s ≥ 1. To do so, we will show that every xp, p ≥ 1, can be
approximated as close as desired by iterates T ns (z) where the exponents n form a set with
positive lower density.

Let thus p, s ≥ 1 be fixed. For notational simplicity, we will denote jm(p, s) by jm, for
any m ≥ 1. Then, for every m ≥ 1 we define by induction on j ≥ 0 a family of sets
(Am,j)0≤j<jm+1−jm as follows:

Am,0 :=

{
njm + kdjm + k′pTs(xp) : 0 ≤ k′ ≤ αdjm

pTs(xp)
, 0 ≤ k ≤ αdjm+1

djm
− 2

}
,

and, for 1 ≤ j < jm+1 − jm,

Am,j :=
⋃

1≤k≤
αdjm+j+1
djm+j

−1

(Am,j−1 + kdjm+j).

As in the proof of [23, Theorem 5.31, Equation (16)], one easily checks by induction that
max(Am,j) ≤ αdjm+j+1, for any 0 ≤ j < jm+1 − jm and m ≥ 1. Moreover, by [23, Fact 5.35]
(in fact exactly reproducing its proof), we have d(A) > 0 where

A :=
⋃
m≥1

⋃
0≤j<jm+1−jm

Am,j.

Note that A depends on the fixed parameters s and p. Thus to finish the proof of the
theorem, we need only prove that for every m ≥ 1 and every 0 ≤ j < jm+1 − jm, we have

‖T ns (z)− xp‖ ≤ 2−(jm−1), n ∈ Am,j.

This shall be proven as in [23, Fact 5.34] up to some modifications. Let m ≥ 1 and 0 ≤ j <
jm+1 − jm, we first observe that for any n ∈ Am,j we have

‖T ns (z)− xp‖ ≤
∥∥∥∥T ns ( jm+j∑

i=1

zi

)
− xp

∥∥∥∥+
∑

i>jm+j

∥∥∥∥T ns (zi)

∥∥∥∥.
Since max(Am,j) ≤ αdjm+j+1, we have n ≤ αdjm+j+1 ≤ αdi for every i > jm+j and n ∈ Am,j,
and it follows from (ii) that ∑

i>jm+j

‖T ns (zi)‖ <
∑

i>jm+j

2−i ≤ 1

2jm+j
.

To conclude we now turn to proving that for every m ≥ 1, 0 ≤ j < jm+1− jm and n ∈ Am,j,

(3.1)
∥∥∥∥T ns ( jm+j∑

i=1

zi

)
− xp

∥∥∥∥ ≤ j∑
i=0

2−(jm+i).

Let m ≥ 1. We proceed by induction on 0 ≤ j < jm+1 − jm. If n ∈ Am,0 (i.e., j = 0) then
n = njm + kdjm + k′pTs(xp) with 0 ≤ k ≤ αdjm+1

djm
− 2 and 0 ≤ k′ ≤ αdjm

pTs (xp)
, and by (i) and (iv)

T ns

( jm∑
i=1

zi

)
− xp = T njm+kdjm+k′pTs (xp)

s

( jm∑
i=1

zi

)
− xp

= T njm+k′pTs (xp)
s (zjm)− T k′pTs (xp)

s

(
xp −

jm−1∑
i=1

zi

)
.
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By (iii) we get ∥∥∥∥T ns ( jm∑
i=1

zi

)
− xp

∥∥∥∥ ≤ 2−jm .

Assume now that (3.1) has been proven up to j − 1 for some 1 ≤ j < jm+1 − jm. For
n ∈ Am,j, we write n = kdjm+j + l with l ∈ Am,j−1 and

0 ≤ k ≤ αdjm+j+1

djm+j

− 1.

Then, by (i) we have

T ns

( jm+j∑
i=1

zi

)
− xp = T kdjm+j+l

s

( jm+j∑
i=1

zi

)
− xp

= T ls

( jm+j−1∑
i=1

zi

)
− xp + T ls(zjm+j).

Since l ∈ Am,j−1, we deduce from the induction hypothesis and (ii) that∥∥∥∥T ns ( jm+j∑
i=1

zi

)
− xp

∥∥∥∥ ≤ j−1∑
i=0

2−(jm+i) + 2−(jm+j),

and (3.1) as desired. �

Application to operators of C-type. We will apply Theorem 3.1 to operators of C-type
on `p(N), 1 ≤ p < ∞. First we shall recall their definition, following the formalism of [23,
Section 6]. As usual, we denote by (ek)k∈N the unit sequence of `p(N). An operator of C-type
is associated with a data of four parameters v, w, ϕ and b:

• v = (vn)n≥1 is a sequence of non-zero complex numbers with
∑

n≥1 |vn| <∞;
• w = (wn)n≥1 is a sequence of complex numbers such that

0 < inf
n≥1
|wn| ≤ sup

n≥1
|wn| <∞;

• ϕ : N → N is such that ϕ(0) = 0, ϕ(n) < n for every n ≥ 1, and the set ϕ−1({l}) is
infinite for every l ≥ 0;
• b = (bn)n≥0 is an increasing sequence of integers with b0 = 0 and bn+1 − bn is a
multiple of 2(bϕ(n)+1 − bϕ(n)) for every n ≥ 1.

Now, for a data v, w, ϕ and b as above, the operator of C-type Tv,w,ϕ,b is defined by

Tv,w,ϕ,b(ek) =


wk+1ek+1 if k ∈ [bn, bn+1 − 1), n ≥ 0

vnebϕ(n)
−
(∏bn+1−1

j=bn+1wj

)−1

ebn if k = bn+1 − 1, n ≥ 1

−
(∏b1−1

j=b0+1wj

)−1

e0 if k = b1 − 1.

Here, by convention, an empty product is equal to 0. From now on, we assume that the
condition

inf
n≥0

∏
bn<j<bn+1

|wj| > 0

is satisfied. As shown by [23, Fact 6.2], this assumption ensures that Tv,w,ϕ,b is a bounded
operator from `p(N) into itself. It can also be checked that each element of c00 is a periodic
point for Tv,w,ϕ,b, more precisely

T
2(bn+1−bn)
v,w,ϕ,b ek = ek if k ∈ [bn, bn+1), n ≥ 0
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see [23, Fact 6.4].
In order to deal with frequent hypercyclicity, the authors of [23] introduce a subclass of

operators of C-type. As we are interested in common frequent hypercyclicity, we will work
within this subclass. It consists in those operators of C-type for which the data v, w, ϕ, b
has the following special structure: for every k ≥ 1,

• ϕ(n) = n− 2k−1 for every n ∈ [2k−1, 2k);
• there exists ∆(k) ∈ N such that the size of the block [bn, bn+1), i.e. the quantity
bn+1 − bn, is equal to ∆(k) for every n ∈ [2k−1, 2k);
• there exists v(k) ∈ C \ {0} such that vn = v(k) for every n ∈ [2k−1, 2k);
• there exists a sequence (w

(k)
i )1≤i<∆(k) such that wbn+i = w

(k)
i for every 1 ≤ i < ∆(k)

and every n ∈ [2k−1, 2k).
An operator of C-type which satisfies the previous conditions is called an operator of C+-

type. The next result is a criterion for a countable family of operators of C+-type to share
a common frequently hypercyclic vector.

Theorem 3.2. Let (Tv(s),w(s),ϕ,b)s≥1 be a countable family of operators of C+-type on `p(N)
where b does not depend on s. We assume that there exists a constant α > 0 such that for
every s ≥ 1, every C ≥ 1 and every k0 ≥ 1, there exists an integer k ≥ k0 such that, for
every 0 ≤ n ≤ α∆(k),

(3.2) |v(k)(s)|
∆(k)−1∏
i=n+1

|w(k)
i (s)| > C.

If, for any s, t ≥ 1, there exists a constant Ks,t > 0 such that for any r ≥ ρ ≥ 1,

(3.3)
∣∣∣∣ wρ(t)wρ+1(t) . . . wr(t)

wρ(s)wρ+1(s) . . . wr(s)

∣∣∣∣ ≤ Ks,t,

then
⋂
s≥1 FHC(Tv(s),w(s),ϕ,b) is non-empty.

Note that since b does not depend on s, by definition, the integers ∆(k), k ≥ 1, do not
depend on s either. It is plainly checked that condition (3.2) is equivalent to saying that
each Ts satisfies the assumption of [23, Theorem 6.9]. In particular, if {Tv(s),w(s),ϕ,b : s ∈ N}
is reduced to a single operator (i.e., v(s) and w(s) do not depend on s), then the previous
criterion is exactly [23, Theorem 6.9].

For the proof of Theorem 3.2, we recall [23, Fact 6.8] below.

Fact 1. Let T be an operator of C+-type on `p(N) and k ≥ 1. For any l < 2k−1 and
1 ≤ m ≤ ∆(k), we have

Tm(eb
2k−1+l+1

−m) = v(k)

 ∆(k)−1∏
i=∆(k)−m+1

w
(k)
i

 ebl −

∆(k)−m∏
i=1

w
(k)
i

−1

eb
2k−1+l

.

Proof of Theorem 3.2. Without loss of generality, we can assume that 0 < α < 1. It suffices
to check that the assumptions of Theorem 3.1 are satisfied. Since every finitely supported
vector is periodic for C+-type operators, we define X0 := c00 and fix x, y ∈ X0, ε > 0 and
s, q ≥ 1. There exists k0 ≥ 1 such that

x =
∑
l<2k0

bl+1−1∑
j=bl

xjej.
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By condition (3.2), for any C > 0, there exists k ≥ k0 such that

|v(k)(s)|
∆(k)−1∏
i=n+1

|w(k)
i (s)| > C, 0 ≤ n ≤ α∆(k).

Since v(s) and w(s) are bounded, upon choosing C large enough, we may assume that k is
so large that the following holds true:
(a) ∆(k0) < min((1− α

2
)∆(k), α

2
∆(k) − 1);

(b) ∆(k) is a multiple of pTt(y) for any t ≥ 1.
Indeed, as noted after the definition of C-type operators, since the period of any vector in
X0 can be explicitely expressed in terms of the sequence b, (b) is satisfied whenever y is
supported in [0, b2k−1 [. Let us now set n := ∆(k) − 1, d := 2∆(k) and

z :=
∑
l<2k0

bl+1−1∑
j=bl

xj

v(k)(s)
∆(k)−1∏
i=j−bl+2

w
(k)
i (s)

−1(
j−bl∏
i=1

wbl+i(s)

)−1

eb
2k−1+l+1

−n+j−bl .

Like for (b) above, d is a multiple of pTs(z) for any s ≥ 1. Thus condition (1) of Theorem
3.1 is satisfied.

Let us now fix 0 ≤ m ≤ αd
4

and 1 ≤ t ≤ q. We observe that for every l < 2k0 and
bl ≤ j ≤ bl+1 − 1, we have

b2k−1+l+1 − n+ j − bl +m ∈ [b2k−1+l, b2k−1+l+1).

Indeed, by definition b2k−1+l+1 − b2k−1+l = ∆(k) and by (a), −∆(k) ≤ −n + j − bl + m < 0.
So for every t ≥ 1, we have

Tmt (eb
2k−1+l+1

−n+j−bl) =

 ∆(k)−n+j−bl+m∏
i=∆(k)−n+j−bl+1

w
(k)
i (t)

 eb
2k−1+l+1

−n+j−bl+m,

hence the expression

(3.4) Tmt (z) =
∑
l<2k0

bl+1−1∑
j=bl

xj

v(k)(s)
∆(k)−1∏

i=j−bl+m+2

w
(k)
i (s)

−1(
j−bl∏
i=1

wbl+i(s)

)−1

(
j−bl+m+1∏
i=j−bl+2

w
(k)
i (t)

w
(k)
i (s)

)
eb

2k−1+l+1
−n+j−bl+m.

Using (a), we know that 0 ≤ j− bl +m+ 1 ≤ α∆(k) which, by (3.2), (3.3) and the definition
of C+-type operators, implies that for some constant A > 0 (independent of k),

‖Tmt (z)‖ ≤ ‖x‖C−1 max
1≤t′≤q

(Ks,t′)A
∆(k0)

.

Up to choosing C large enough, we get (2) in Theorem 3.1.
Let us now estimate the norm of T n+m

s (z)− Tms (x) for 0 ≤ m ≤ αd
4
. By Fact 1, we obtain

T n−(j−bl)
s (eb

2k−1+l+1
−n+j−bl) = v(k)(s)

 ∆(k)−1∏
i=∆(k)−n+j−bl+1

w
(k)
i (s)

 ebl

−

∆(k)−n+j−bl∏
i=1

w
(k)
i (s)

−1

eb
2k−1+l

.
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Applying T j−bls yields

T ns (eb
2k−1+l+1

−n+j−bl) =

v(k)(s)
∆(k)−1∏
i=j−bl+2

w
(k)
i (s)

(j−bl∏
i=1

wbl+i(s)

)
ej

−
(
w

(k)
j−bl+1(s)

)−1

eb
2k−1+l

+j−bl .

Moreover, since m+ j − bl < ∆(k), we have

Tms (eb
2k−1+l

+j−bl) =

(
j−bl+m∏
i=j−bl+1

w
(k)
i (s)

)
eb

2k−1+l
+j−bl+m,

hence

T n+m
s (eb

2k−1+l+1
−n+j−bl) =

v(k)(s)
∆(k)−1∏
i=j−bl+2

w
(k)
i (s)

(j−bl∏
i=1

wbl+i(s)

)
Tms (ej)

−
(
w

(k)
j−bl+1(s)

)−1
(

j−bl+m∏
i=j−bl+1

w
(k)
i (s)

)
eb

2k−1+l
+j−bl+m.

By definition of z, it follows that

T n+m
s (z)

= Tms (x)−
∑
l<2k0

bl+1−1∑
j=bl

xj

v(k)(s)
∆(k)−1∏

i=j−bl+m+1

w
(k)
i (s)

−1(
j−bl∏
i=1

wbl+i(s)

)−1

eb
2k−1+l

+j−bl+m.

By assumption, we thus get

‖T n+m
s (z)− Tms (x)‖ ≤ ‖x‖C−1A∆(k0)

and condition (3) of Theorem 3.1 with α′ = α
4
, as desired. �

Remark 3.3. It is clear from the proof that the conclusion of Theorem 3.2 remains true
under the following weaker (but less nice) assumption: we assume that there exists a constant
0 < α < 1 such that for every integers s, q ≥ 1, every C ≥ 1 and every k0 ≥ 1, there exists
k ≥ k0 such that for every 0 ≤ n ≤ α∆(k),

(3.5) |v(k)(s)|
∆(k)−1∏
i=n+1

|w(k)
i (s)| > C;

(3.6) sup
1≤t≤q

0≤j<∆(k0)

0≤m≤α∆(k)

|v(k)(s)|
∆(k)−1∏
i=j+2

|w(k)
i (s)|

−1(
j+m+1∏
i=j+2

|w(k)
i (t)|

)
<

1

C
.

Moreover, (3.6) is satisfied whenever there exists a constant 0 < α < 1 such that for every
integers s, q ≥ 1, every C ≥ 1 and every k0 ≥ 1, there exists k ≥ k0 and A > 1 such that

(3.7) sup
i,t≥1

max

(
|wi(t)|,

1

|wi(t)|

)
≤ A;
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and

(3.8) sup
1≤t≤q

0≤m≤α∆(k)

|v(k)(s)|
∆(k)−1∏
i=1

|w(k)
i (s)|

−1(
m+1∏
i=1

|w(k)
i (t)|

)
<

1

C
.

Thus the conclusion of Theorem 3.2 remains true under the assumptions of Remark 3.3 with
(3.6) replaced by (3.7) and (3.8).

It turns out that for a certain subclass of operators of C+-type, for which (3.7) automat-
ically holds, some rather simple condition for frequent hypercyclicity is given in [23]. We
shall now see that a similar condition for a family of operators in this subclass implies (3.8)
and thus common frequent hypercyclicity.

Application to operators of C+,1-type. Operators of C+,1-type are introduced in [23,
Section 6.5] as those operators of C+-type for which the parameters v and w satisfy the
following extra condition: for every k ≥ 1,

v(k) = 2−τ
(k)

and w
(k)
i =

{
2 if 1 ≤ i ≤ δ(k)

1 if δ(k) < i < ∆(k) ,

where τ := (τ (k))k≥1 and δ := (δ(k))k≥1 are two strictly increasing sequences of integers such
that δ(k) < ∆(k), k ≥ 1. Within this class of operators of C+,1-type, that we simply denote
by Tτ,δ,ϕ,b, examples of frequently hypercyclic operators which are not ergodic were provided
in [23].

Theorem 3.4. Let (Tτ(s),δ(s),ϕ,b)s≥1 be a countable family of operators of C+,1-type on `p(N)
where b does not depend on s. If

inf
t≥1

lim sup
k→∞

δ(k)(t)− τ (k)(t)

∆(k)
> 0,

then
⋂
s≥1 FHC(Tτ(s),δ(s),ϕ,b) is non-empty.

Proof. Observe that (3.7) in Remark 3.3 trivially holds, thus it is enough to check (3.8) and
(3.5). To do so, we define

α < min

(
1,

1

2
inf
t≥1

lim sup
k→∞

δ(k)(t)− τ (k)(t)

∆(k)

)
.

Let s, k0 ≥ 1 and C ≥ 1, and let us set n = ∆(k) − 1. Since ∆(k) → ∞ as k → ∞, there
exists k ≥ k0 such that

δ(k)(s)− τ (k)(s)− 2

∆(k)
> 2α and α∆(k) > log2(C).

Then it follows from the definition of operators of C+,1-type that (3.8) in Remark 3.3 is
satisfied if the following inequality holds

2τ
(k)(s)−δ(k)(s) sup

t≥1
0≤m≤α∆(k)

m+1∏
i=1

|w(k)
i (t)| < 1

C
.

Now, we have

sup
t≥1

0≤m≤α∆(k)

m+1∏
i=1

|w(k)
i (t)| ≤ 2α∆(k)+1 ≤ 2

1
2

(δ(k)(s)−τ (k)(s)).
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Hence,

2τ
(k)(s)−δ(k)(s) sup

t≥1
0≤m≤α∆(k)

m+1∏
i=1

|w(k)
i (t)| ≤ 2

1
2

(τ (k)(s)−δ(k)(s)) < 2−α∆(k)

<
1

C
.

It remains to check that for every 0 ≤ n ≤ α∆(k),

|v(k)(s)|
∆(k)−1∏
i=n+1

|w(k)
i (s)| > C

which works the same as in the proof of [23, Theorem 6.17]. �

Remark 3.5. When the family is reduced to a single operator, Theorem 3.4 is exactly [23,
Theorem 6.17].

4. Common frequent hypercyclicity with respect to densities

We refer to [21] for the abstract definitions and the study of generalized lower and upper
densities. In particular it is proven there that to any sequence of non-negative real numbers
α = (αk)k≥1 such that

∑
k≥1 αk = +∞, one can associate generalized lower and upper

densities dα and dα by the formulae

dα(E) = lim inf
n→∞

∑
k≥1

αn,k1E(k) and dα(E) = 1− dα(N \ E), E ⊂ N,

where (αn,k)n,k≥1 is the matrix given by

αn,k =

{
αk/(

∑n
j=1 αj) for 1 ≤ k ≤ n,

0 otherwise.

Then we also have dα(E) = lim supn→∞
∑+∞

k=1 αn,k1E(k). By [19, Lemma 2.7], if we assume
in addition that the sequence (αn/(

∑n
j=1 αj))n≥1 converges to 0, then for any set E ⊂ N

enumerated as an increasing sequence (nk)k≥1, we have

dα(E) = lim inf
k→∞

∑k
j=1 αnj∑nk
j=1 αj

.

For α and β two sequences as above, let us write α . β if there exists k0 ∈ N such that
(αk/βk)k≥k0 is non-increasing. Then we have

dβ(E) ≤ dα(E) ≤ dα(E) ≤ dβ(E), E ⊂ N,

whenever α . β (see [19, Lemma 2.8]). Thus one can define scales of well-ordered densities
with respect to the type of growth of the defining sequences. As we aim to study densities
dα which are less than or equal to the natural one, it will be natural to assume that α is
non-decreasing.

From now on, a sequence α = (αk)k≥1 of positive numbers will be called completely
admissible if it satisfies the following two properties:

• α is non-decreasing;
• (αn/(

∑n
j=1 αj))n≥1 → 0 as n→∞.

Notice that the first condition automatically ensures that
∑

k≥1 αk = +∞. A generalized
density dα or dα will be also called completely admissible if it is associated to a completely
admissible sequence α. Finally, the function ϕα : (0,+∞) → (0,+∞) defined by ϕα(x) =∑

k≤x αk, x ≥ 1, will play an important role in the sequel.
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Several examples of generalized densities can be found in [19, 20]. In this work, we will
mainly be interested in four types of such sequences.

(1) For 0 ≤ ε ≤ 1, Eε := (exp(kε))k≥1. By a summation by parts, one can see that for
0 < ε < 1, ϕEε(n) ∼ n1−ε

ε
exp(nε) (where uk ∼ vk means uk/vk → 1);

(2) For s ∈ N ∪ {∞}, Ds := (exp(k/ log(s)(k)))k≥k0 with k0 large enough, where log(s) =
log ◦ · · ·◦log, log appearing s times, with the conventions log(0)(x) = x and log(∞)(x) =
1 for any x > 0. One can check that ϕDs(n) ∼ log(s)(n) exp(n/ log(s)(n)) for s ∈ N
(see [20, Remark 3.10]) and ϕD∞(n) ∼ e

e−1
exp(n);

(3) For all l ≥ 1, let us consider the sequence Ll = (elog(k) log(l)(k))k≥k0 , with k0 large
enough. A simple calculation leads to ϕLl(n) ∼ ne

log(n) log(l)(n)

log(l)(n)
;

(4) For r ≥ −1 we shall also write Pr := (kr)k≥1. Then ϕPr(k) ∼ kr+1

r+1
.

Notice that for any 0 ≤ ε < 1, any s ∈ N, any l > 1 and any r ≥ 0, the sequences Eε, Ds,
Ll and Pr are completely admissible. Observe that the usual lower density d (associated to
any constant sequence (a, a, a, . . .), a > 0) corresponds to dE0 , dD0

and dP0
. Later on, the

sequence E1 shall be simply denoted by E ; note that dE = dD∞ . For any 0 < δ ≤ ε < 1, any
s ≤ t ∈ N, any r ≥ 0 and any positive integer l ≤ l′, we thus have

dE ≤ dDt ≤ dDs ≤ dEε ≤ dEδ ≤ dLl ≤ dLl′ ≤ dPr ≤ d.

Let X be a separable Fréchet space. As for frequently hypercyclic operators, we now say
that a continuous linear operator on T is α-frequently hypercyclic if there exists x ∈ X such
that for any non-empty open set U in X, dα(N(x, U, T )) is positive. We denote by FHCα(T )
the set of all α-frequently hypercyclic vectors for T . As proven in [19], no operator can be
E-frequently hypercyclic (and hence α-frequently hypercyclic whenever E . α).

A first natural question arises:

Question 4.1. Does common α-frequent hypercyclicity exist for some α?

Let us recall that any operator satisfying the Frequent Universality Criterion is automat-
ically α-universal whenever α . Ds for some s ≥ 1 [20]. Since each of the criteria given
in Section 2 are natural strengthening of the Frequent Hypercyclicity Criterion, we could
expect a positive answer to this question for any such α. Moreover, it is easily seen that
FHCPr(T ) = FHC(T ) for any r > −1 (see [19, Lemma 2.10]). So Question 4.1 has a strong
positive answer for sequences with polynomial growth. In fact, the next proposition shows
that for multiples of a single operator, the answer is either strongly positive or strongly
negative.

We will say that an increasing sequence (un)n satisfies the ∆2-condition if there exists a
constant K > 0 such that ϕ(2n) ≤ Kϕ(n) for any n large enough. It is not difficult to check
that (un)n does not satisfy the ∆2-condition if and only if for all C > 0,

(4.1) lim inf
n→∞

(
un

ub(1+C)nc

)
= 0,

where bxc stands for the largest integer that is less than or equal to x.

Theorem 4.2. Let X be a separable Banach space, T a bounded linear operator on X and
let α = (αk)k≥1 be a completely admissible sequence. Then

(1) if the sequence (ϕα(n))n satisfies the ∆2-condition, then FHC(T ) = FHCα(T );
(2) if ϕα(n) = o(ϕα(b(1 +C)nc)) for all C > 0, then HC(λT )∩FHCα(µT ) = ∅ for any

0 < λ < µ < +∞.
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Proof. To prove (1), let us assume that (ϕα(n))n satisfies the ∆2-condition. We need only
check that for any E ⊂ N, if d(E) is positive then dα(E) is also positive. Let us enumerate
some E ⊂ N with d(E) > 0 by some increasing sequence (nk)k≥1. Thus, there exists M > 0
with k ≤ nk ≤ Mk for any k ≥ 1. Since α is completely admissible and (ϕα(n))n satisfies
the ∆2-condition, it is easy to check that there exists a constant K depending on M , such
that

nk∑
j=1

αj ≤
Mk∑
j=1

αj ≤ K

k∑
j=1

αj ≤ K

k∑
j=1

αnj ,

for k large enough, whence

dα(E) = lim inf
k→∞

∑k
j=1 αnj∑nk
j=1 αj

≥ 1

K
.

Let us now prove (2) and assume that for any C > 0,

(4.2)
ϕα(n)

ϕα(b(1 + C)nc)
→ 0 as n→∞.

Let us also fix 0 < λ < µ < +∞. We shall prove that if x ∈ HC(λT )∩HC(µT ), then for any
fixed r > 0 we have dα(N(x,B(0, r), µT )) = 0, hence x /∈ FHCα(µT ). Since x ∈ HC(λT ),
there exists an increasing sequence (pk)k∈N ⊂ N such that ‖λpkT pk(x)‖ > r. Writing
T iµpk−iT pk−i = µ−i(µ/λ)pkλpkT pk , 0 ≤ i ≤ pk, one can thus check that ‖µpk−iT pk−i(x)‖ > r
whenever (µ‖T‖)i ≤ (µ/λ)pk . Since λ‖T‖ > 1 and µ‖T‖ > 1, the last inequality is equivalent
to i ∈ {0, . . . , bCpkc} for some constant 0 < C < 1 not depending on k. Therefore,⋃

k∈N

{
b(1− C)pkc+ 1, . . . , pk

}
⊂ N(x,X \B(0, r), µT ).

hence, using (4.2),

dα(N(x,X \B(0, r), µT )) ≥ 1− lim
k→∞

(
ϕα(b(1− C)pkc)

ϕα(pk)

)
= 1.

�

Remark 4.3. We shall make some remarks.
(1) With the above notations, the proof of the previous proposition actually shows a

little stronger result, namely: if ϕα(n) = o(ϕα(b(1 + C)nc)) for all C > 0, then for
any 0 < λ < µ <∞ and any x ∈ HC(λT ) ∩HC(µT ),
(a) dα(N(x,B(0, r), λT )) = 1;
(b) dα(N(x,B(0, r), µT )) = 0.

(2) We point out that the condition ϕα(n) = o(ϕα(b(1 +C)nc)) for all C > 0 is stronger
than not satisfying the ∆2-condition (see (4.1)). However, these two conditions are
equivalent if we additionally assume that the quotient ϕα(n)

ϕα(b(1+C)nc) is non-increasing
for any C > 0.

Now, we would like to observe that if a sequence (ϕα(n))n satisfies the ∆2-condition
it has a growth controlled both from below and from above by some polynomials,
i.e., if and only if there exist r, r′ ≥ 1 such that

cnr
′ ≤ ϕα(n) ≤ Cnr

for some constants c, C > 0 and any n ∈ N. To see the second inequality, one can
choose k ∈ N such that 2k ≤ n < 2k+1, use that the sequence (ϕα(n))n is increasing
and apply k + 1 times the ∆2-condition to it. Now, we recall that FHCPr(T ) =
FHC(T ) for any r > −1 (see [19, Lemma 2.10]).
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Moreover, on the scale of weighted densities given above the only class of sequences
α for which ϕα satisfies the ∆2-condition is given by polynomials Pr. Indeed, one
can check that all the other ones do satisfy the condition ϕα(n) = o(ϕα(b(1 +C)nc))
for all C > 0.

We can thus explicitly illustrate the preceding proposition on our examples.

Corollary 4.4. Let X be a separable Banach space, T a bounded linear operator on X and
l ≥ 1. Then for any 0 < λ < µ < +∞,

HC(λT ) ∩ FHCLl(µT ) = ∅.

We shall mention that the non-existence of common frequently hypercyclic vectors in
Theorem 4.2 concerns multiples λT and µT of the same operator T with |λ| 6= |µ|. So
we can still wonder whether common frequent hypercyclicity may exist for other kinds of
families. Actually, this is the case if we consider families of unimodular multiples of a single
operator, as the following extension of León-Müller’s Theorem [7, Theorem 6.28] shows.

Theorem 4.5. Let X be a complex F -space, T an α-frequently hypercyclic operator on X
where α is a completely admissible sequence. Then λT is α-frequently hypercyclic for any
λ ∈ C with |λ| = 1, and FHCα(λT ) = FHCα(T ).

The proof goes along the same lines as that of [7, Theorem 6.28], replacing Lemma 6.29
by the following.

Lemma 4.6. Let A ⊂ N be a set of positive lower α-density where α is completely admissible.
Let also I1, . . . , Iq ⊂ N be such that ∪qj=1Ij = N and n1, . . . , nq ∈ N. Then B := ∪qj=1(nj +
A ∩ Ij) has positive lower α-density.

Proof. Let N := max1≤i≤q(ni). On the one hand, for any M ≥ N ,∑M+N
k=1 αk1B(k)∑M+N

k=1 αk
≥ 1

q

∑q
j=1

∑M+N
k=1 αk1nj+A∩Ij(k)∑M+N

k=1 αk

≥ 1

q

∑q
j=1

∑M
k=1 αk1A∩Ij(k)∑M+N
k=1 αk

≥ 1

q

∑M
k=1 αk1A(k)∑M+N
k=1 αk

=
1

q

∑M
k=1 αk1A(k)∑M

k=1 αk

∑M
k=1 αk∑M+N
k=1 αk

.

On the other hand,∑M
k=1 αk∑M+N
k=1 αk

= 1−
∑M+N

k=M+1 αk∑M+N
k=1 αk

≥ 1−

(
M+N∑
j=M+1

αj∑j
k=1 αk

)
−→ 1, as M → +∞.

Hence,

dα(B) = lim inf
M→∞

∑M+N
k=1 αk1B(k)∑M+N

k=1 αk
≥ lim inf

M→∞

1

q

∑M
k=1 αk1A(k)∑M

k=1 αk
=

1

q
dα(A) > 0.

�

To conclude, we come back to the main result of [20]: any operator satisfying the Frequent
Hypercyclicity Criterion is automatically α-frequently hypercyclic if α . Ds for some s ≥ 1.
The following question naturally arises:
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Question 4.7. For any operator T ∈ L(X) satisfying the Frequent Hypercyclicity Criterion,
does there exist a vector x ∈ X which is α-frequently hypercyclic for T and for any α . Ds
for some s ≥ 1?

In [20] the notion of α-frequent universality is introduced as a natural extension of α-
frequent hypercyclicity for sequences of operators. In fact, the previously mentioned result
of [20] is proved for the notion of α-frequent universality. Let us denote by FUα(T ) the set
of α-frequently universal vectors for T ⊂ L(X). We give a positive answer to the previous
question for that more general notion.

Proposition 4.8. We denote by D the set of all completely admissible sequences α = (αk)k≥1

such that α . Ds for some s ∈ N. If T ⊂ L(X) satisfies the Frequent Universality Criterion,
then ⋂

α∈D

FUα(T ) 6= ∅.

Proof. It is enough to prove that
⋂
s≥1FUDs(T ) is non-empty. The proof is based on the

calculations led in [20, Section 3]. Let us consider the function f : N \ {0} → N defined by
f(j) = m for all j ∈ {am, . . . , am+1 − 1} with

a1 = 1 and am = 22.
. .

22m

where 2 appears m times for m ≥ 2.

Then we define the sequence (nk(f))k≥1 as follows:

n1(f) = 2 and nk(f) = 2
k−1∑
i=1

f(δi) + f(δk), k ≥ 2,

where δj is the index of the first zero in the dyadic representation of j (e.g., if k = 11 =
1.20 + 1.21 + 0.22 + 1.23, then δk = 3). Lemma 3.8 of [20] (where one may check that
lN = f(blog(N)/ log(2)c)) ensures that there exist C1, C2, C3 > 0 such that for all s ≥ 1 and
for all integers k large enough,

C1k − C2 log(s)(k) ≤ nk(f) ≤ C1k + C3 log(s)(k).

With such an asymptotic behavior, a similar calculation as that of [19, Lemma 4.10]
allows us to conclude that dDs({nk(f) : k ∈ N}) > 0 for all s ≥ 1. Moreover, the fact that
dDs({nk(f) : k ∈ N}) > 0 for every s ≥ 1 and that the set {k ∈ N : δk = p} is an arithmetic
progression for every p ≥ 1, imply dDs({nk(f) : δk = p}) > 0 for every p, s ≥ 1. Notice also
that, as explained in [20, Section 2], the proof of the classical Frequent Universality Criterion
relies on a lemma ensuring the existence of countably many sets as above [24, Lemma 9.8]
satisfying d({nk(f) : δk = p}) > 0 for every p ≥ 1. Hence, we can now mimic the proof
of the classical Frequent Universality Criterion using the sets {nk(f) : δk = p}, p ≥ 1, to
construct a vector which is Ds-frequently universal for T and for every s ≥ 1. �

5. Remark: an ergodic approach?

We shall conclude this paper by a word on the possible approach to common frequent
hypercyclicity by ergodic theory. The most natural way to conceive frequent hypercyclicity
is probably through Birkhoff’s ergodic theorem: if T is a bounded linear operator on some
separable Banach space X, which is an ergodic measure-preserving transformation with
respect to some measure m with full support, then

lim
N→∞

card(N(x, U, T ) ∩ [0, N ])

N + 1
= m(U) > 0,
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for any non-empty open set U of X. In particular T is frequently hypercyclic. We recall that
T is measure-preserving form if for any measurable set A ⊂ X, we havem(A) = m(T−1(A)),
and that T is ergodic with respect to m if for every measurable subsets A and B of X, with
m(A),m(B) > 0, there exists an integer n such that m(T−n(A) ∩ B) > 0 (see [34] for
instance).

Now, if T1 and T2 are two ergodic measure-preserving transformations ofX for respectively
two measures m1 and m2 which are absolutely continuous with respect to each other, then
T1 and T2 automatically share a common frequently hypercyclic vector. Theorem 3.22 in [4]
gives a sufficient condition for an operator T on X to be ergodic and measure-preserving
for some Gaussian measure mT . In general, for two operators T1 and T2 satisfying this
condition, mT1 and mT2 are not absolutely continuous with respect to each other and one
cannot conclude whether they share a common frequently hypercyclic vector or not.

But the opposite situation can also occur: for example, let Bw1 and Bw2 be two weighted
shifts on `2(N) such that the supremum rp,wi of their point spectrum is greater than 1,
i = 1, 2 (see Paragraph 2.3.2 where rp,wi appears). Then by [4, Theorem 3.22], Bw1 and Bw2

are ergodic and measure-preserving with respect to some Gaussian measures mw1 and mw2 .
For i = 1, 2, let us define wi,n =

∏n
k=0wi(k). Now, as explained in [4, Pages 5111-5112], mw1

and mw2 are absolutely continuous with respect to each other if and only if the sequence
(1−

√
w1,n/w2,n)n∈N is in `2(N). This condition is much stronger than the condition derived

from the proof of Theorem 2.17 (see Remark 2.19) which ensures the existence of common
frequently hypercyclic vectors for more general families of weighted shifts. Note also that
an ergodic approach has not permitted so far to obtain common frequent hypercyclicity
for general multiples of a single operator. Yet, the fact that (1 −

√
w1,n/w2,n)n∈N is in

`2(N) implies that mw1(FHC(Bw1)∩FHC(Bw2)) = 1, while our results give no quantitative
information on the size of the set of common frequently hypercyclic vectors.

It would be of interest to investigate further the problem of common frequent hypercyclicity
from the point of view of ergodicity.
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